KEITHLEY

Model 2790 SourceMeter® Switch System Reference Manual

WARRANTY

Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of 1 year from date of shipment.

Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries, diskettes, and documentation.

During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.
To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio. You will be given prompt assistance and return instructions. Send the product, transportation prepaid, to the indicated service facility. Repairs will be made and the product returned, transportation prepaid. Repaired or replaced products are warranted for the balance of the original warranty period, or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley's express written consent, or misuse of any product or part. This warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow instructions.

Abstract

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES.

NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF ITS INSTRUMENTS AND SOFTWARE EVEN IF KEITHLEY INSTRUMENTS, INC., HAS BEEN ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

KEITHLEY

$$
\begin{aligned}
& \text { A GREATER MEASURE OF CONFIDENCE } \\
& \text { Keithley Instruments, Inc. }
\end{aligned}
$$

[^0]Belgium: Sint-Pieters-Leeuw $¥ 02-3630040 ¥$ Fax: 02-363 $0064 ¥$ wwkeithley.nl China: Beijing $¥ 8610-82251886 ¥$ Fax: 8610-82251892 $¥$ wnkeithley.com.cn Finland: Helsinki $¥ 09-5306-6560 ¥$ Fax: 09-5306-6565 $¥$ wulkeithley.com France: Palaiseau C dex $¥ 01-64532020 ¥$ Fax: 01-60 $117726 ¥$ wwnkeithley.fr Germany: Germering $¥ 089 / 849307-40 ¥$ Fax: 089/84 $9307-34 ¥$ wulkeithley.de Great Britain: Theale $¥ 01189297500 ¥$ Fax: $01189297519 ¥$ wwwkeithley.co.uk India: Bangalore $¥ 0802128027 ¥$ Fax : $0802128005 ¥$ wawkeithley.com

[^1]
Model 2790 SourceMeter ${ }^{(8)}$ Switch System Reference Manual

©2002, Keithley Instruments, Inc.
All rights reserved.
Cleveland, Ohio, U.S.A.
Third Printing, September 2003
Document Number: 2790-901-01 Rev. C

Manual Print History

The print history shown below lists the printing dates of all Revisions and Addenda created for this manual. The Revision Level letter increases alphabetically as the manual undergoes subsequent updates. Addenda, which are released between Revisions, contain important change information that the user should incorporate immediately into the manual. Addenda are numbered sequentially. When a new Revision is created, all Addenda associated with the previous Revision of the manual are incorporated into the new Revision of the manual. Each new Revision includes a revised copy of this print history page.
Revision A (Document Number 2790-901-01) .. 2002
Revision B (Document Number 2790-901-01) 2003

KEITHLEY Safety Precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous conditions may be present.
This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product. Refer to the manual for complete product specifications.
If the product is used in a manner not specified, the protection provided by the product may be impaired.
The types of product users are:
Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.
Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the instrument. They must be protected from electric shock and contact with hazardous live circuits.
Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line voltage or replacing consumable materials. Maintenance procedures are described in the manual. The procedures explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, and perform safe installations and repairs of products. Only properly trained service personnel may perform installation and service procedures.
Keithley products are designed for use with electrical signals that are rated Measurement Category I and Measurement Category II, as described in the International Electrotechnical Commission (IEC) Standard IEC 60664. Most measurement, control, and data I/O signals are Measurement Category I and must not be directly connected to mains voltage or to voltage sources with high transient over-voltages. Measurement Category II connections require protection for high transient over-voltages often associated with local AC mains connections. Assume all measurement, control, and data I/O connections are for connection to Category I sources unless otherwise marked or described in the Manual.
Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any unknown circuit before measuring.
Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If the circuit is capable of operating at or above 1000 volts, no conductive part of the circuit may be exposed.
Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance limited sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective devices to limit fault current and voltage to the card.
Before operating an instrument, make sure the line cord is connected to a properly grounded power receptacle. Inspect the connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.
When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input power disconnect device must be provided, in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting ca-
bles or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.
Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the voltage being measured.

The instrument and accessories must be used in accordance with its specifications and operating instructions or the safety of the equipment may be impaired.
Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating information, and as shown on the instrument or test fixture panels, or switching card.
When fuses are used in a product, replace with same type and rating for continued protection against fire hazard.
Chassis connections must only be used as shield connections for measuring circuits, NOT as safety earth ground connections.
If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use of a lid interlock.

If a $\xlongequal{\perp}$ screw is present, connect it to safety earth ground using the wire recommended in the user documentation.
The \angle symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.
The symbol on an instrument shows that it can source or measure 1000 volts or more, including the combined effect of normal and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.
The i^{l} symbol indicates a connection terminal to the equipment frame.
The WARNING heading in a manual explains dangers that might result in personal injury or death. Always read the associated information very carefully before performing the indicated procedure.
The CAUTION heading in a manual explains hazards that could damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.
Before performing any maintenance, disconnect the line cord and all test cables.
To maintain protection from electric shock and fire, replacement components in mains circuits, including the power transformer, test leads, and input jacks, must be purchased from Keithley Instruments. Standard fuses, with applicable national safety approvals, may be used if the rating and type are the same. Other components that are not safety related may be purchased from other suppliers as long as they are equivalent to the original component. (Note that selected parts should be purchased only through Keithley Instruments to maintain accuracy and functionality of the product.) If you are unsure about the applicability of a replacement component, call a Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water based cleaner. Clean the exterior of the instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with no case or chassis (e.g., data acquisition board for installation into a computer) should never require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the factory for proper cleaning/servicing.

Table of Contents

1 Getting Started
General information 1-2
Warranty information 1-2
Contact information 1-2
Safety symbols and terms 1-2
Inspection 1-3
Options and accessories 1-3
Model 2790 features 1-4
Plug-in switching modules 1-6
Pseudocards 1-7
Identifying installed switching modules 1-7
Power supply restrictions with the 7753 module 1-7
Front and rear panel familiarization (QS1) 1-8
Front panel summary 1-8
Rear panel summary 1-12
Power-up (QS2) 1-13
Line power connection 1-13
Line frequency 1-14
Setting line voltage and replacing fuse 1-14
Power-up sequence 1-15
Keyclick 1-16
Display 1-16
Status and error messages 1-16
Remote programming - display 1-16
Defaults and user setups 1-18
Saving and restoring setups 1-19
Remote programming - default and user setups 1-23
Remote programming information 1-24
Quick start exercises (QS3) 1-24
Basic DMM measurements - front panel inputs 1-25
Closing and opening channels 1-27
Simple scanning (7702) 1-32
Trigger and return readings - remote programming 1-35
2 Closing and Opening Switching Module Channels
Test System Safety Precautions 2-2
Close/open overview 2-2
Switching module installation and connections 2-4
Module installation 2-4
Connections 2-5
Pseudocards 2-6
Channel assignments 2-6
System channel operation (7702 only) 2-7
2-wire functions 2-7
4-wire functions (paired channels) 2-8
Controlling the system channel 2-9
Multiple channel operation 2-13
Controlling multiple channels 2-14
Multiple channel operation anomalies (7702 only) 2-19
Dual independent multiplexers (7702 only) 2-21
Identifying installed modules and viewing closed channels 2-26
CARD menu 2-26
Switching module queries (remote operation) 2-28
Relay closure count 2-29
Reading relay closure count 2-30
Setting count update interval 2-30
Models 7751, 7752, and 7753 switching modules 2-31
Switching module capabilities 2-31
Model 7702 switching module 2-33
Switching module capabilities 2-33
Schematic diagram 2-34
Memory patterns 2-36
Description 2-36
Recalling memory patterns from the front panel 2-36
Memory pattern commands 2-37
Memory pattern command options 2-39
Memory pattern scanning 2-39
Memory patterns program example 2-39
3 Basic DMM Operation
DMM measurement capabilities 3-2
High energy circuit safety precautions 3-3
Performance considerations 3-4
Warm-up 3-4
Autozero 3-4
LSYNC (line cycle synchronization) 3-5
Remote programming - autozero and LSYNC 3-6
Channel scan list parameter 3-6
7702 module scanning 3-6
Memory pattern scanning 3-7
Voltage measurements (DCV and ACV) 3-8
DCV input divider 3-8
Connections 3-8
Volts measurement procedure 3-11
Crest factor 3-12
Low level considerations 3-12
Current measurements (DCI and ACI) 3-13
Connections 3-14
Amps measurement procedure 3-15
AMPS fuse replacement (front panel AMPS input) 3-16
Resistance measurements ($\Omega 2$ and $\Omega 4$) 3-16
Connections 3-17
Standard resistance measurements 3-19
Offset-compensated ohms 3-20
Temperature measurements 3-22
Thermistors 3-22
4-wire RTDs 3-22
Connections 3-23
Temperature measurement configuration 3-24
Temperature measurement procedure 3-26
Frequency and period measurements 3-27
Trigger level 3-27
Gate time 3-27
Connections 3-28
Frequency and period measurement procedure 3-29
Continuity testing 3-30
Connections 3-30
Continuity testing procedure 3-31
Remote programming for basic measurements 3-32
Basic measurement commands 3-32
Basic measurement programming examples 3-38
Measurement queries 3-39
:FETCh? 3-39
:READ? 3-40
:MEASure[:<function>]? 3-40
[:SENSe[1]]:DATA:FRESh? 3-41
[:SENSe[1]]:DATA[:LATest]? 3-41
Examples 3-42
4 Range, Digits, Rate, Bandwidth, \& Filter
Range 4-2
Measurement ranges and maximum readings 4-2
Manual ranging 4-3
Auto ranging 4-3
Scanning (7702 only) 4-3
Remote programming - range 4-4
Digits 4-6
Scanning (7702 only) 4-6
Remote programming - digits 4-6
Rate and bandwidth 4-8
Rate 4-8
Bandwidth 4-10
Scanning (7702 only) 4-10
Remote programming - rate and bandwidth 4-10
Filter 4-13
Filter characteristics 4-13
Remote programming - filter 4-18
5 Relative, Math, Ratio, Channel Average, and dB
Relative 5-2
Basic operation 5-2
Remote programming - rel 5-4
Math 5-7
$\mathrm{mX}+\mathrm{b}$ 5-8
m/X + b (reciprocal) 5-9
Percent 5-11
SxIohms 5-12
SxVohms 5-13
Basic operation 5-14
Remote programming - math 5-15
Ratio and channel average (7702 only) 5-18
Basic operation 5-19
Remote programming - ratio and channel average 5-21
dB 5-22
Remote programming - dB 5-23
6 Buffer
Buffer overview 6-2
Front panel buffer 6-2
Auto clear 6-2
Timestamps 6-4
Storing readings 6-5
Recalling readings 6-6
Buffer statistics 6-7
Remote programming - buffer 6-8
Buffer commands 6-8
Programming example 6-14
7 Scanning
Scanning fundamentals 7-2
7702 module scanning 7-2
7751/7752/7753 module scanning 7-10
Scan configuration (7702 only) 7-11
Scan reset 7-13
Simple scan 7-14
Advanced scan 7-15
Setting delay 7-18
Monitor channel 7-18
Auto channel configuration 7-20
Saving setup 7-20
Auto scan 7-21
Scan operation (7702 only) 7-21
Basic scan 7-21
Manual/external trigger scan 7-22
Monitor scan (analog trigger) 7-24
Remote programming - scanning 7-26
7702 module scanning 7-26
7751/7752/7753 module scanning 7-27
Scanning commands 7-29
Scanning programming example 7-33
Scanning examples 7-33
External trigger scan 7-34
Monitor scan 7-37
8 Triggering
Trigger model 8-2
Idle 8-2
Control source and event detection 8-3
Delay (auto or manual) 8-3
Device action 8-5
Output trigger 8-5
Reading hold (autosettle) 8-6
Hold example 8-6
External triggering 8-7
Digital I/O 8-8
External trigger 8-8
Voltmeter complete 8-9
External triggering example 8-10
External triggering with BNC connections 8-13
Remote programming - triggering 8-14
Trigger model (remote operation) 8-14
Trigger model operation 8-16
Triggering commands 8-17
Programming example 8-18
9 Limits and Digital I/O
Limits 9-2
Front panel scanning (7702 only) 9-4
Remote scanning 9-4
Basic limits operation 9-4
Digital I/O 9-5
Digital input (trigger link input) 9-5
Digital outputs 9-6
Setting digital output 9-11
Scanning 9-12
Remote programing - limits and digital output 9-13
Limits and digital output commands 9-13
Limits and digital outputs programming example 9-15
Application - sorting resistors 9-16
Limits 9-16
Digital outputs 9-18

10 Remote Operations

Operation enhancements
 10-2

Pseudocards 10-2
Autozero 10-2
dB calculation 10-2
Separate function setups 10-2
DCV input divider 10-3
Multiple channel operation 10-3
GPIB setup 10-3
GPIB standards 10-3
Selecting GPIB and setting primary address 10-4
GPIB connections 10-4
General bus commands 10-7
REN (remote enable) 10-7
IFC (interface clear) 10-8
LLO (local lockout) 10-8
GTL (go to local) 10-8
DCL (device clear) 10-8
SDC (selective device clear) 10-8
GET (group execute trigger) 10-9
SPE, SPD (serial polling) 10-9
Front panel GPIB operation 10-9
Error and status messages 10-9
GPIB status indicators 10-9
LOCAL key 10-10
Programming syntax 10-10
Command words 10-10
Query commands 10-12
Case sensitivity 10-13
Long-form and short-form versions 10-13
Short-form rules 10-13
Program messages 10-14
Response messages 10-16
Message exchange protocol 10-17
RS-232 interface operation 10-17
Sending and receiving data 10-17
Baud rate 10-17
Signal handshaking (flow control) 10-18
Terminator 10-19
Selecting and configuring RS-232 interface 10-19
RS-232 connections 10-20
Error messages 10-21
11 Status Structure
Overview 11-2
Status byte and SRQ 11-2
Status register sets 11-2
Queues 11-2
Clearing registers and queues 11-4
Programming and reading registers 11-5
Programming enable registers 11-5
Reading registers 11-6
Status byte and service request (SRQ) 11-6
Status byte register 11-7
Service request enable register 11-8
Serial polling and SRQ 11-8
Status byte and service request commands 11-9
Serial poll programming example 11-10
Status register sets 11-12
Register bit descriptions 11-12
Condition registers 11-18
Event registers 11-19
Event enable registers 11-20
Queues 11-21
Output queue 11-21
Error queue 11-21
12 Common Commands
13 SCPI Signal Oriented Measurement Commands
CONFigure:<function> [<rang>], [<res>], [<clist>] 13-4
FETCh? 13-6
READ? 13-7
MEASure:<function>? [<rang>], [<res>], [<clist>] 13-8
14 FORMat and Miscellaneous SYSTem Commands
FORMat commands 14-2
FORMat[:DATA] <type>[,<length>] 14-2
FORMat:ELEMents <item list> 14-6
FORMat:BORDer <name> 14-7
Miscellaneous SYSTem commands 14-8
SYSTem:PRESet 14-8
SYSTem:VERSion 14-8
SYSTem:KEY <NRf> 14-8
SYSTem:BEEPer[:STATe] 14-9
15 SCPI Reference Tables
Reference tables 15-2
16 Performance Verification
Introduction 16-2
Verification test requirements 16-2
Environmental conditions 16-2
Warm-up period 16-3
Line power 16-3
Recommended test equipment 16-4
Verification limits 16-5
Example reading limit calculation 16-5
Calculating resistance reading limits 16-5
Restoring factory defaults 16-5
Performing the verification test procedures 16-6
Verification test summary 16-6
Test considerations 16-7
Model 2790 verification 16-8
Verifying DC voltage 16-8
Verifying AC voltage 16-10
Verifying DC current 16-12
Verifying AC current 16-13
Verifying resistance 16-14
Verifying temperature 16-16
Verifying frequency 16-17
Model 7702 verification 16-18
Verifying DC voltage 16-18
Verifying AC voltage 16-20
Verifying DC current 16-21
Verifying AC current 16-23
Verifying resistance 16-24
Verifying temperature 16-26
Verifying frequency 16-27
Verifying ratio and average 16-28
Model 7751, 7752, and 7753 verification 16-28
Recommended test equipment 16-29
Verifying the current source 16-30
Verifying the voltage source 16-31
Verifying the current measure input 16-32
Verifying source-current resistance 16-33
Verifying source-voltage resistance 16-35
17 Calibration
Introduction 17-2
Environmental conditions 17-2
Warm-up period 17-2
Line power 17-2
Calibration considerations 17-3
Calibration code 17-4
Front panel calibration code 17-4
Remote calibration code 17-4
Comprehensive calibration 17-5
Calibration cycle 17-5
Recommended equipment 17-5
Aborting calibration 17-6
Front panel calibration 17-6
Remote calibration 17-14
Manufacturing calibration 17-20
Firmware revision level 17-20
Recommended test equipment 17-21
Extender board preparation 17-21
Test equipment connections 17-21
Unlocking manufacturing calibration 17-21
Calibration for firmware revision A04 and higher 17-22
Calibration for firmware revision A03 and lower 17-24
Model 7751, 7752, and 7753 calibration 17-26
Recommended test equipment 17-26
Model 7751/7752/7753 calibration 17-27
18 Routine Maintenance
Introduction 18-2
Setting the line voltage and replacing the line fuse 18-2
Replacing the AMPS fuse 18-4
Replacing Model 7702 plug-in module amps fuses 18-5
Replacing Model 7751/7752/7753 plug-in module fuses 18-6
Replacing non-volatile RAM battery 18-8
Plug-in module relay closure count 18-9
Closure count commands 18-9
Reading relay closure count 18-10
Resetting relay closure count 18-10
Setting count update interval 18-11
Front panel tests 18-11
KEY test 18-11
DISP test 18-12
A Specifications
(Models 2790, 7751, 7752, 7753, and 7702) A-1
Ohms specification calculations (7751/7752/7753) A-8
7751/7752/7753 I-source A-8
7751/7753 V-source A-9
B Status and Error Messages
C Signal Processing Sequence \& Data Flow
Signal processing sequence C-2
Basic signal processing C-2
Signal processing using instrument features C-3
Signal processing using Ratio or Ch Avg C-6
Data flow (remote operation) C-7
SENSe and sample buffer C-8
[SENS[1]]:DATA[LATest]? C-9
[SENS[1]]:DATA:FRESh? C-9
FETCh? C-10
READ? C-10
MEASure? C-10
CALC[1]:DATA[LATest]? C-10
CALC[1]:DATA:FRESh? C-10
CALC3:LIM1:FAIL? C-11
CALC3:LIM2:FAIL? C-11
TRACe:DATA? C-11
CALC2:IMM? C-12
CALC2:IMM C-12
CALC2:DATA? C-12
Continuous measurement mode C-12
Scanning C-13
D Measurement Considerations
Measurement considerations D-2
Thermoelectric potentials D-2
Thermoelectric generation D-3
Minimizing thermal EMFs D-4
Source resistance noise D-5
Magnetic fields D-6
Radio frequency interference D-6
Ground loops D-7
Shielding D-9
Meter loading D-10
E Temperature Equations
Thermistor equation E-2
RTD equation E-4
F IEEE-488 Bus Overview
Introduction F-2
Bus description F-2
Bus lines F-4
Data lines F-4
Bus management lines F-5
Handshake lines F-5
Bus commands F-6
Uniline commands F-7
Universal multiline commands F-8
Addressed multiline commands F-8
Address commands F-9
Unaddress commands F-9
Common commands F-9
SCPI commands F-9
Command codes F-10
Typical command sequences F-12
IEEE command groups F-13
Interface function codes F-14
G Calibration Reference
Introduction G-2
Command summary G-2
Miscellaneous calibration commands G-4
:CODE G-4
:COUNt? G-4
:INIT G-5
:LOCK G-5
:LOCK? G-6
:SAVE G-6
:DATE G-7
:NDUE G-7
DC calibration commands G-8
:STEP1 G-8
:STEP2 G-9
:STEP3 G-9
:STEP4 G-9
:STEP5 G-10
:STEP6 G-10
:STEP7 G-10
:STEP8 G-11
:STEP9 G-11
STEP10 G-11
:STEP11 G-12
:STEP12 G-12
AC calibration commands G-13
:AC:STEP<n> G-14
Manufacturing calibration commands G-15
:AC:STEP<14|15> G-15
:DC:STEP0 G-15
Model 7751, 7752, and 7753 calibration commands G-16
CODE G-17
:COUNt? G-17
:DATE? G-18
:INIT G-18
:LOCK G-19
:LOCK? G-19
:RCOunt G-19
Current source calibration commands G-20
:DATA? G-20
:SAVE G-21
Remote error reporting G-22
Error summary G-22
Error queue G-24
Status byte EAV (Error Available) bit G-24
Generating an SRQ on error G-24
Detecting calibration step completion G-24
Using the *OPC? query G-24
Using the *OPC command G-25
Generating an SRQ on calibration complete G-25
Calibration program G-26
Computer hardware requirements G-26
Software requirements G-26
Calibration equipment G-26
General program instructions G-27

List of Illustrations

1 Getting StartedFigure 1-1 Model 2790 front pane1-8
Figure 1-2 Model 2790 rear panel 1-12
Figure 1-3 Power module 1-13
Figure 1-4 Front panel keys to close and open channels - system channel operation (7702) 1-28
Figure 1-5 Front panel keys to close and open
channels - multiple channel operation 1-30
Figure 1-6 Simple scan operation 1-33
Figure 1-7 Exercise 5 - Trigger and return a single reading 1-36
Figure 1-8 Exercise 6 - Trigger and return multiple readings 1-37
Figure 1-9 Exercise 7 - Return a single reading (continuous triggering) 1-38
2 Closing and Opening Switching Module Channels
Figure 2-1 7702 2-wire system channel connections to Model 2790 DMM 2-8
Figure 2-2 7702 4-wire system channel connections to Model 2790 DMM 2-9
Figure 2-3 System channel operation - closing next or previous 7702 measurement channel 2-10
Figure 2-4 System channel operation - specifying 7702 measurement channel to close 2-11
Figure 2-5 Opening all channels in mainframe 2-11
Figure 2-6 Multiple channel operation - specifying a channel to close 2-15
Figure 2-7 Multiple channel operation - opening one or all channels 2-16
Figure 2-8 Dual multiplexer configuration (7702) 2-21
Figure 2-9 Dual multiplexer application connections (7702) 2-23
Figure 2-10 Testing DUT 1 2-25
Figure 2-11 CARD menu tree 2-27
Figure 2-12 Model 7751/7752/7753 simplified schematic 2-32
Figure 2-13 Model 7702 simplified schematic 2-35
Figure 2-14 Test setup for memory pattern test example 2-47
3 Basic DMM Operation
Figure 3-1 Line cycle synchronization 3-5
Figure 3-2 DCV and ACV connections using front panel inputs 3-9
Figure 3-3 DCV and ACV connections using Model 7702 switching module 3-10
Figure 3-4 DCI and ACI connections using front panel inputs 3-14
Figure 3-5 DCI and ACI connections using Model 7702 switching module 3-15
Figure 3-6 $\quad \Omega 2$ and $\Omega 4$ connections for front panel inputs 3-17
Figure 3-7 $\quad \Omega 2$ and $\Omega 4$ connections for Model 7702 switching module 3-18
Figure 3-8 Thermistor connections 3-23
Figure 3-9 4-wire RTD connections 3-24
Figure 3-10 FREQ and PERIOD connections for front panel inputs 3-28
Figure 3-11 FREQ and PERIOD connections using Model 7702 switching module 3-29
Figure 3-12 Continuity connections 3-31
4 Range, Digits, Rate, Bandwidth, \& Filter
Figure 4-1 Speed vs. noise characteristics 4-8
Figure 4-2 Moving and repeating filters 4-15
Figure 4-3 Filter configuration flow chart 4-17
5 Relative, Math, Ratio, Channel Average, and dBFigure 5-1 MATH menu tree5-7
6Figure 6-1 Recalling buffer data - relative timestamp6-6
Figure 6-2 Recalling buffer data - real-time clock timestamp 6-7
7Figure 7-1 Trigger model with STEP function (7702 module)7-5
Figure 7-2 Trigger model with SCAN function (7702 module) 7-6
Figure 7-3 Scan configuration flowchart 7-12
Figure 7-4 Trigger model (memory pattern scanning) 7-28
Figure 7-5 External trigger scan example 7-35
Figure 7-6 Monitor scan example 7-38
8 Triggering
Figure 8-1 Front panel trigger model (without scanning) 8-2
Figure 8-2 Device action 8-5
Figure 8-3 TRIG LINK pinout 8-7
Figure 8-4 Trigger link input pulse specifications (EXT TRIG) 8-8
Figure 8-5 Trigger link output pulse specifications (VMC) 8-9
Figure 8-6 DUT test system 8-10
Figure 8-7 Trigger link connections 8-11
Figure 8-8 Operation model for triggering example 8-12
Figure 8-9 DIN to BNC trigger cable 8-13
Figure 8-10 Trigger model (remote operation) 8-15
9 Limits and Digital I/O
Figure 9-1 Default limits 9-2
Figure 9-2 Digital I/O port 9-5
Figure 9-3 Digital I/O port simplified schematic 9-6
Figure 9-4 Controlling externally powered relays 9-9
Figure 9-5 NAND gate control 9-10
Figure 9-6 Setup to test 100Ω resistors 9-16
Figure 9-7 Limits to sort 100W resistors ($1 \%, 5 \%$, and $>5 \%$) 9-17
10 Remote Operations
Figure 10-1 IEEE-488 connector 10-4
Figure 10-2 IEEE-488 connections 10-5
Figure 10-3 IEEE-488 connector location 10-6
Figure 10-4 RS-232 interface connector 10-20
11 Status Structure
Figure 11-1 Model 2790 status register structure 11-3
Figure 11-2 16-bit status register 11-5
Figure 11-3 Status byte and service request (SRQ) 11-6
Figure 11-4 Standard event status register 11-12
Figure 11-5 Operation event register 11-14
Figure 11-6 Measurement event register 11-16
Figure 11-7 Questionable event register 11-18
14 FORMat and Miscellaneous SYSTem Commands
Figure 14-1 ASCII data format 14-3
Figure 14-2 IEEE-754 data formats 14-5
Figure 14-3 Key-press codes 14-9
16 Performance Verification
Figure 16-1 Connections for Model 2790 DC volts verification 16-8
Figure 16-2 Connections for Model 2790 AC volts verification 16-11
Figure 16-3 Connections for Model 2790 DC current verification 16-12
Figure 16-4 Connections for Model 2790 AC current verification 16-13
Figure 16-5 Connections for Model 2790 resistance verification (100W to 10MW ranges) 16-14
Figure 16-6 Connections for Model 2790 resistance verification (100MW range) 16-15
Figure 16-7 Connections for Model 2790 frequency verification 16-17
Figure 16-8 Connections for Model 7702 DC volts verification 16-18
Figure 16-9 Connections for Model 7702 AC volts verification 16-20
Figure 16-10 Connections for Model 7702 DC current verification 16-21
Figure 16-11 Connections for Model 7702 AC current verification 16-23
Figure 16-12 Connections for Model 7702 resistance verification (100W to 10MW ranges) 16-24
Figure 16-13 Connections for Model 7702 resistance verification (100MW range) 16-25
Figure 16-14 Connections for Model 7702 frequency verification 16-27
Figure 16-15 Connections for Model 7702 ratio and average verification 16-28
Figure 16-16 Connections for Model 7751/7752/7753 current source verification 16-30
Figure 16-17 Connections for Model 7751/7753 voltage source verification 16-31
Figure 16-18 Connections for Model 7751/7753 current measure input verification 16-32
Figure 16-19 Connections for Model 7751/7752/7753 source-current resistance verification 16-33
Figure 16-20 Connections for Model 7751/7753 source-voltage resistance verification 16-35
17 Calibration
Figure 17-1 Low-thermal short connections 17-7
Figure 17-2 Connections for DC volts and ohms calibration 17-8
Figure 17-3 Connections for DC and AC amps calibration 17-11
Figure 17-4 Connections for AC volts calibration 17-12
Figure 17-5 Calibrator connections for manufacturing calibration 17-22
Figure 17-6 Function generator connections for manufacturing calibration 17-22
Figure 17-7 Connections for Model 7751/7752/7753 current source calibration 17-28
18 Routine Maintenance
Figure 18-1 Power module 18-3
Figure 18-2 AMPS fuse 18-4
Figure 18-3 Model 7702 amps fuses 18-5
Figure 18-4 Model 7751/7752/7753 fuses 18-7
A Specifications
Figure A-1 Model 7751 measurement uncertainty for various voltage source settings A-10
Figure A-2 Model 7753 measurement uncertainty for various voltage source settings A-10
D Measurement Considerations
Figure D-1 Thermal EMF generation D-3
Figure D-2 Power line ground loops D-7
Figure D-3 Eliminating ground loops D-8
Figure D-4 Shielding example D-9
Figure D-5 Meter loading D-10

List of Tables

1 Getting Started
Table 1-1Table 1-2Models 7702, 7751, 7752, and 7753 switching modules1-6
1-15Table 1-3 Display commands
1-17Table 1-4 Default settings
1-20
Table 1-5 Default setup commands 1-23
Table 1-6 Exercise 1-Measure resistance - store readings in buffer 1-26
Table 1-7 Exercise 2 - Close and open 7702 channels (system channel operation) 1-29
Table 1-8 Exercise 3 - Close and open 7751/7752/7753 channels (multiple channel operation) 1-31
Table 1-9 Exercise 4 - Simple scanning 1-34
2 Closing and Opening Switching Module Channels
Table 2-1 7702 system channel control commands 2-12
Table 2-2 Multiple channel control commands 2-17
Table 2-3 Relay closure count commands 2-29
Table 2-4 Memory pattern commands 2-37
Table 2-5 Command sequence for memory patterns test example 2-40
3 Basic DMM Operation
Table 3-1 Autozero and LSYNC commands 3-6
Table 3-2 Thermistor temperature measurement configuration 3-25
Table 3-3 RTD parameters 3-25
Table 3-4 4-wire RTD temperature measurement configuration 3-26
Table 3-5 Basic measurement commands 3-32
4 Range, Digits, Rate, Bandwidth, \& Filter
Table 4-1 Measurement ranges and maximum readings 4-2
Table 4-2 Range commands 4-4
Table 4-3 Digits commands 4-7
Table 4-4 Rate and bandwidth settings 4-9
Table 4-5 Rate and bandwidth commands 4-11
Table 4-6 Filter commands 4-18
5 Relative, Math, Ratio, Channel Average, and dB
Table 5-1 Rel commands 5-4
Table 5-2 Math commands 5-15
Table 5-3 Ratio and channel average commands 5-21
Table 5-4 dB commands 5-23
6 Buffer
Table 6-1 Buffer commands 6-9
$7 \quad$ Scanning
Table 7-1 Scanning commands 7-29
Table 7-2 External trigger scan example 7-36
Table 7-3 Monitor scan example 7-39
8 Triggering
Table 8-1 Auto delay settings 8-4
Table 8-2 SCPI commands - triggering 8-17
$9 \quad$ Limits and Digital I/O
Table 9-1 OUTPUT menu 9-11
Table 9-2 Limits and digital I/O commands 9-13
10 Remote Operations
Table 10-1 General bus commands 10-7
Table 10-2 RS-232 connector pinout 10-20
Table 10-3 PC serial port pinout 10-21
11 Status Structure
Table 11-1 Common and SCPI commands to reset registers and clear queues 11-4
Table 11-2 Status byte and service request enable register commands 11-9
Table 11-3 Condition register commands 11-18
Table 11-4 Event register commands 11-19
Table 11-5 Event enable registers commands 11-20
Table 11-6 Error queue commands 11-22
12 Common Commands
Table 12-1 IEEE-488.2 common commands and queries 12-2
13 SCPI Signal Oriented Measurement Commands
Table 13-1 Signal oriented measurement command summary 13-2
14 FORMat and Miscellaneous SYSTem Commands
Table 14-1 SCPI commands - data format 14-2
15 SCPI Reference Tables
Table 15-1 CALCulate command summary 15-3
Table 15-2 DISPlay command summary 15-6
Table 15-3 FORMat command summary 15-6
Table 15-4 ROUTe command summary 15-7
Table 15-5 SENSe command summary 15-9
Table 15-6 SOURce command summary 15-19
Table 15-7 STATus command summary 15-20
Table 15-8 SYSTem command summary 15-21
Table 15-9 TRACe command summary 15-24
Table 15-10 Trigger command summary 15-25
Table 15-11 UNIT command summary 15-26
16 Performance Verification
Table 16-1 Recommended verification equipment 16-4
Table 16-2 DCV reading limits 16-9
Table 16-3 ACV reading limits 16-11
Table 16-4 DCI limits 16-12
Table 16-5 ACI limits 16-13
Table 16-6 Limits for resistance verification 16-15
Table 16-7 Four-wire RTD temperature verification reading limits 16-16
Table 16-8 Model 7702 DCV reading limits 16-19
Table 16-9 Model 7702 ACV reading limits 16-21
Table 16-10 Model 7702 DCI limits 16-22
Table 16-11 Model 7702 ACI limits 16-23
Table 16-12 Limits for Model 7702 resistance verification 16-25
Table 16-13 Model 7702 four-wire RTD temperature verification reading limits 16-26
Table 16-14 Recommended equipment for Model 7751/7752/7753 verification 16-29
Table 16-15 Limits for Model 7751/7752/7753 source-current resistance verification 16-34
Table 16-16 Limits for Model 7751 source-voltage resistance verification 16-36
Table 16-17 Limits for Model 7753 source-voltage resistance verification 16-37
17 Calibration
Table 17-1 Recommended equipment for comprehensive calibration 17-5
Table 17-2 Comprehensive calibration procedures 17-7
Table 17-3 DC volts calibration summary 17-9
Table 17-4 Resistance calibration summary 17-10
Table 17-5 DC current calibration summary 17-11
Table 17-6 AC voltage calibration summary 17-12
Table 17-7 AC current calibration summary 17-13
Table 17-8 \quad DC voltage calibration programming steps 17-16
Table 17-9 Resistance calibration programming steps 17-17
Table 17-10 DC current calibration programming steps 17-18
Table 17-12 AC current calibration programming steps 17-19
Table 17-11 AC voltage calibration programming steps 17-19
Table 17-13 Recommended equipment for manufacturing calibration 17-21
Table 17-14 $1 \mathrm{~V}, 10 \mathrm{~Hz}$ frequency errors 17-23
Table 17-15 Recommended equipment for Model 7751/7752/7753 calibration 17-26
18 Routine Maintenance
Table 18-1 Power line fuse 18-3
Table 18-2 Closure count commands 18-9
D Measurement Considerations
Table D-1 Material thermoelectric coefficients D-2
E Temperature Equations
Table E-1 Model 2790 curve fitting constants for thermistors E-2
Table E-2 RTD parameters E-4
F IEEE-488 Bus Overview
Table F-1 IEEE-488 bus command summary F-7
Table F-2 Hexadecimal and decimal command codes F-10
Table F-3 Typical addressed multiline command sequence F-12
Table F-4 Typical addressed common command sequence F-12
Table F-5 IEEE command groups F-13
Table F-6 Model 2790 interface function codes F-14
G Calibration Reference
Table G-1 Remote calibration command summary G-2
Table G-2 DC calibration commands G-8
Table G-3 AC calibration commands G-13
Table G-4 Model 7751/7752/7753 calibration commands G-16
Table G-5 Calibration errors G-22

Getting Started

Quick Start - Of the following section topics, three can be used immediately to quickly acquaint yourself with fundamental instrument operations. Use QS1 to familiarize yourself with front panel controls, use QS2 to power-up the instrument and finally, use QS3 to perform exercises to operate the instrument.

- General information - Covers general information that includes warranty information, contact information, safety symbols and terms, inspection, and available options and accessories.
- Model 2790 features - Summarizes the features of Model 2790.
- Plug-in switching modules - Summarizes the capabilities of the Keithley Models 7702, 7751, 7752, and 7753 switching modules.

QS1 - Front and rear panel familiarization - Summarizes the controls and connectors of the instrument.

QS2 • Power-up - Covers line power connection, line voltage setting, fuse replacement, power line frequency, and the power-up sequence.

- Display — Provides information about the display of the Model 2790.
- Defaults and user setups — Lists the *RST and factory default settings; covers the three setup configurations available to the user.
- Remote programming information - Explains how SCPI commands are presented in this manual.

QS3 • Quick start exercises — Provides abbreviated operating information and exercises (front panel and remote programming) to acquaint a user with operation basics.

General information

Warranty information

Warranty information is located at the front of this manual. Should your Model 2790 require warranty service, contact the Keithley representative or authorized repair facility in your area for further information. When returning the instrument for repair, be sure to fill out and include the service form at the back of this manual to provide the repair facility with the necessary information.

NOTE The service form requires the serial number of the Model 2790. The serial number label is located inside the unit on the bottom panel. The serial number can be viewed by removing the slot covers and/or switching modules from the mainframe.
The serial number can also be read from the front panel by selecting the SNUM item of the SETUP menu. Press SHIFT and then SETUP to access the menu. For remote operation, the serial number can be read using the *IDN? command (see Section 12 for details).

WARNING Before removing (or installing) switching modules, make sure to turn off the Model 2790 and disconnect the line cord. Also, remove any other external power connected to the instrument or switching module(s).

Contact information

Worldwide phone numbers are listed at the front of this manual. If you have any questions, please contact your local Keithley representative or call a Keithley Application Engineer at 1-800-348-3735 (U.S. and Canada only).

Safety symbols and terms

The following symbols and terms may be found on the instrument or used in this manual:
If a \fallingdotseq screw is present, connect it to safety earth ground using the wire recommended in the user documentation.
The 4 symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.
The symbol on an instrument shows that it can source or measure 1000 volts or more, including the combined effect of normal and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.
The $/ \downarrow$ symbol indicates a connection terminal to the equipment frame.
The WARNING heading used in this manual explains dangers that might result in personal injury or death. Always read the associated information very carefully before performing the indicated procedure.

The CAUTION heading used in this manual explains hazards that could damage the instrument. Such damage may invalidate the warranty.

Inspection

Model 2790 was carefully inspected electrically and mechanically before shipment. After unpacking all items from the shipping carton, check for any obvious signs of physical damage that may have occurred during transit. (There may be a protective film over the display lens, which can be removed.) Report any damage to the shipping agent immediately. Save the original packing carton for possible future shipment. The following items are included with every Model 2790 order:

- Model 2790 with line cord.
- Accessories as ordered.
- Certificate of calibration.
- DMM-950-00 CD-ROM that contains PDFs of the User's Manual ($\mathrm{P} / \mathrm{N} 2790-900-01$) and the Reference Manual (P/N 2790-901-01).
- Hardcopy of the User's Manual (P/N 2790-900-01).

If an additional manual is required, order the appropriate manual package. The manual packages include a manual and any pertinent addenda.

Options and accessories

Plug-in switching modules

NOTE The Model 2790 User's Manual provides information specific to airbag module testing using the Models 7751, 7752, 7753, and 7702 switching modules.

NOTE A side-by-side comparison of the following switching modules are provided in Table 1-1.

Model 7702 - This differential multiplexer provides 40 channels of 2-pole input or 20 channels of 4-pole input. It also has two 2-pole channels used exclusively for current input.
Model 7751 - This module has an on-board, programmable current source (0 to 50 mA) to test bridgewires and shunt bars. It also has a built-in voltage source (50 to 500 V) that is used to measure the insulation resistance (HIPOT) between a bridgewire and inflator housing.

Model 7752 - This switching module is similar to the Model 7751, except it does not have a built-in voltage source.

Model 7753 - This switching module is identical to the Model 7751, except that the maximum voltage source output current is $500 \mu \mathrm{~A}$ for rated accuracy as opposed to $50 \mu \mathrm{~A}$ for the Model 7751. Note: only one Model 7753 can be installed in a Model 2790, and it should be installed in slot 1 for rated measurement accuracy.

Cables and adapters (GPIB and trigger link)

Models 7007-1 and 7007-2 shielded GPIB cables - Connect Model 2790 to the GPIB bus using shielded cables and connectors to reduce electromagnetic interference (EMI). Model 7007-1 is one meter long; Model 7007-2 is two meters long.

Model 7009-5 RS-232 cable - Connect the Model 2790 to the RS-232 interface of a PC or PLC.

Models 8501-1 and 8501-2 trigger link cables - Connect Model 2790 to other instruments with Trigger Link connectors (e.g., Model 7002 Switch System). Model 8501-1 is one meter long; Model 8501-2 is two meters long.

Model 8502 trigger link adapter - Lets you connect any of the six trigger link lines of Model 2790 to instruments that use the standard BNC trigger connectors.

Model 8503 DIN to BNC trigger cable - Lets you connect trigger link lines one (Voltmeter Complete) and two (External Trigger) of Model 2790 to instruments that use BNC trigger connectors. Model 8503 is one meter long.

Rack mount kits

Model 4288-1 fixed rack mount kit - Single unit rack mount kit.

Carrying case

Model 1050 padded carrying case - A carrying case for the Model 2790 includes handles and shoulder strap.

Model 2790 features

Model 2790 is a $61 / 2$-digit high-performance SourceMeter switch system. It has two slots to accommodate switching modules; Keithley 7751, 7752, 7753, and 7702. The Model 2790 can measure voltage (DC and AC), current (DC and AC), resistance (2- and 4-wire), temperature (thermistor and 4-wire RTD), frequency and period, and test continuity. Sourcing capabilities are provided by the Models 7751 and 7753 (I-source and V-source) and 7752 (I-source) modules.

The programmable I-source of the 7751/7752/7753 is typically used to determine the resistance of an inflator bridgewire(s) and shunt. The programmable V-source (up to 500V) of the 7751/7753 is typically used to determine the insulation resistance of an inflator. Inflator testing is covered in Section 5 of the Model 2790 User's Manual.

The Keithley 7702 is a multiplexing switching module. Each system channel that is closed or scanned is measured by the Model 2790 DMM. For scanning, each channel can have its own unique setup (i.e., function, range, digits, etc.).

More information on the measurement capabilities of the Model 2790 is provided in "DMM measurement capabilities," page 3-2. Specifications for the Model 2790 and the $7751,7752,7753$, and 7702 switching modules are provided in Appendix A.

Additional features of Model 2790 include:

- Setup storage - Six instrument setups (four user, *RST defaults, and factory defaults) can be saved and recalled.
- Offset-compensated ohms - A two-measurement process for 4-wire ohms to cancel the effects of thermal EMFs. Available for the $100 \Omega, 1 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ ranges.
- Math - mX+b, percent, and $m / X+b$ calculations provide mathematical manipulation of readings. Also included are math functions to calculate low ohms when using the 7751/7752/7753 module and high ohms using the 7751/7753 module.
- Relative - Null offsets or establish baseline values.
- Ratio and channel average - Ratio and average calculations for two switching module channels.
- Buffer - Store up to 55,000 readings in the internal buffer.
- Limits - Two sets of high and low reading limits to test devices.
- Digital I/O port - Five digital limit test output lines to control external circuitry. The digital trigger link and hardware interlock input can also be accessed at this port.
- Monitor - The Model 2790 can monitor a selected channel. A scan can be triggered to start when the Monitor detects a reached reading limit.
- Remote interface - Model 2790 can be controlled using the IEEE-488 interface (GPIB) or the RS-232 interface.

Plug-in switching modules

Up to two Keithley switching modules can be installed in the Model 2790. A side-by-side comparison of the switching modules is provided in Table 1-1.

Basic close/open operation for switching module channels is provided in Section 2, while scanning for the 7702 is covered in Section 7. Connection information for the Models 7751, 7752 , and 7753 switching modules is provided in the Model 2790 User's Manual. Connection information for the Model 7702 is provided in its own manual (packing list).

Table 1-1

Models 7702, 7751, 7752, and 7753 switching modules

	Model 7702	Model 7751/7753	Model 7752
Input channels	40 channels	8 channels	8 channels
Amps inputs	2 channels	N/A	N/A
2-pole operation	40 channels	8 channels	8 channels
4-pole operation	20 channel pairs	4 channels	4 channels
System channel operation	Yes	No	No
Multiple channel operation	Yes	Yes	Yes
Measure volts	300 V Max ${ }^{3}$	Connect no external sources	Connect no external sources
Measure amps	Ch 41 and 42, 3A Max ${ }^{3}$	N/A	N/A
Measure ohms	2/4-wire	2/4-wire	2/4-wire
Measure temp	Thermistor, 4-wire RTD	Thermistor, 4-wire RTD	Thermistor, 4-wire RTD
I-source	N/A	0 to 50 mA	0 to 50 mA
V-source	N/A	50 to $500 \mathrm{~V}^{4}$	No
Relay type ${ }^{1}$	Latching electromechanical	Latching electromechanical	Latching electromechanical
Connector type	Oversized screw terminals	Oversized screw terminals (quick-disconnect)	Oversized screw terminals (quick-disconnect)
Configuration Unique features	Multiplexer ${ }^{2}$ All DMM functions	Independent switching Test bridgwires, shunts, and insulation resistance of airbag inflators	Independent switching Test bridgwires and shunts of airbag inflators

1. Latching relays hold their open/close state after the Model 2790 is turned off. When turned on, all relays open after a few seconds.
2. The Model 7702 can be configured as two independent multiplexers.
3. Note: The 7702 module is safe to use with the 500 V source of the 7751 module. The V -source is energy limited and classified as a non-hazardous source per EN61010.
4. Maximum Model 7751 voltage source output current for rated accuracy is $50 \mu \mathrm{~A}$. Maximum Model 7753 voltage source output current for rated accuracy is $500 \mu \mathrm{~A}$.

Pseudocards

Using remote programming, you can assign a pseudocard to an empty switching module slot. With a pseudocard installed, the Model 2790 will operate as if the switching module is installed in the Model 2790. This feature allows you to configure your system without having the actual switching module installed in the unit. There is a pseudocard for the Keithley Models 7751, 7752, 7753, and 7702 switching modules. For details, see "Pseudocards," page 2-6.

Identifying installed switching modules

On power-up, the model numbers of installed switching modules are displayed briefly. If a Model 7751, 7752, 7753, or 7702 switching module is removed while the Model 2790 is on, the instrument will operate as if the module is installed. That is, the Model 2790 will operate as if the pseudocard is installed.

NOTE To avoid erratic operation, it is not recommended to install or remove switching modules with the power on.

The CARD menu and remote query commands can be used to identify modules installed in the mainframe. For details, see Section 2.

Power supply restrictions with the 7753 module

Under some conditions (low line, maximum current draw), two 7753 modules could draw enough power to cause the Model 2790 to reset. To avoid this situation, installed modules are checked at power-up. If a 7753 module is present, the other slot must be empty or populated with a 7702 module.

If this condition is violated (a Model 7753 plus any other 775x module), the Model 2790 will lock up with the message " 17753 ONLY" displayed, and all annunciators will turn on. In this case, you must remove one module and cycle power to continue.

Front and rear panel familiarization (QS1)

Front panel summary

The front panel of Model 2790 is shown in Figure 1-1.

Figure 1-1
Model 2790 front panel

NOTE Most keys provide a dual function or operation. The nomenclature on a key indicates its unshifted function/operation which is selected by pressing the key. Nomenclature (in blue) above a key indicates its shifted function. A shifted function is selected by pressing the SHIFT key and then the function/ operation key.

1 Special keys and power switch:

SHIFT	Use to select a shifted function or operation.
LOCAL	Cancels GPIB remote mode.
POWER	Power switch. In position turns 2790 on (I), out position turns it off (O).

2 Function and operation keys:	
Top Row	
Unshifted	
DCV	Selects DC voltage measurement function.
ACV	Selects AC voltage measurement function.
DCI	Selects DC current measurement function.
ACI	Selects AC current measurement function.
$\Omega 2$	Selects 2-wire resistance measurement function.
$\Omega 4$	Selects 4-wire resistance measurement function.
FREQ	Selects frequency measurement function.
TEMP	Selects temperature measurement function.
Shifted	
MATH	Configures and controls $m X+b$, percent, $m / X+b$, or the low ohms calculations.
OUTPUT	Configures and controls digital and audio (beeper) output for limits.
RATIO	Enables/disables channel ratio.
CH-AVG	Enables/disables channel average.
CONT	Configures and controls continuity test.
OCOMP	Enables/disables offset compensated ohms with $\Omega 4$ function selected.
PERIOD	Selects period measurement function.
SENSOR	Configures temperature measurements.
Middle Row	
Unshifted	
EX TRIG	Selects external triggering (front panel, bus, trigger link) as the trigger source.
TRIG	Triggers a measurement when in external triggering (EX TRIG).
STORE	Sets the number of readings to store and enables the buffer.
RECALL	Displays stored readings and buffer statistics. Use the $\boldsymbol{\square}, \Delta$, and ∇ keys to navigate through buffer.
FILTER	Enables/disables filter for selected function.
REL	Enables/disables relative for selected function.
4 and	Dual function-Manually scans switching channels. When in a menu, these keys control cursor position for making selections or change values.
Shifted	
DELAY	Sets user delay between trigger and measurement.
HOLD	Holds reading when the selected number of samples is within the selected tolerance.
LIMITS	Sets upper and lower limits for readings.
ON/OFF	Enables/disables limits.
TYPE	Configures and enables filter for selected function.
MONITOR	Selects and enables/disables monitor channel.
CH-OFF	Disables channel for a scan (must be in scan channel setup mode).
CARD	Identifies switching modules installed in mainframe. Set up switching modules that require configuration. View closed channels and channel settings for switching modules that require configuration.
Bottom Row	
Unshifted	
OPEN	Opens closed channel.
CLOSE	Closes specified channel.
STEP	Steps through channels; sends a trigger after each channel.
SCAN	Scans through channels; sends a trigger after last channel.
DIGITS	Sets display resolution for all functions.
RATE	Sets measurement speed (fast, medium, or slow) for all functions.
EXIT	Cancels selection, moves back to measurement display.
ENTER	Accepts selection, moves to next choice or back to measurement display.

Shifted
$\overline{\text { SAVE }} \quad$ Saves up to four instrument setups for future recall and selects power-on setup.
SETUP Restores a default setup (factory or *RST) or a saved setup. Enables/disables buffer auto clear, auto scan, and auto channel configuration. Sets timestamp, date, and time. Displays serial number of Model 2790.
CONFIG Selects and configures a simple scan or an advanced scan.
HALT Disables step/scan.
TEST Selects the calibration menu, display test, or the key-press test.
LSYNC Enables/disables line cycle synchronization. When enabled, noise induced by the power line is reduced at the expense of speed.
GPIB Enables/disables GPIB and selects address.
RS-232 Enables/disables RS-232 interface; selects baud rate, flow control, and terminator.

3 Range keys:

Δ and ∇
AUTO

Dual function-Selects the next higher/lower measurement range for the selected function. When in a menu, these keys make selections or change values. Enables/disables autorange for the selected function.

4 Display annunciators:

$*$ (asterisk)	Readings being stored in buffer.
\leftrightarrow (more)	Indicates additional selections are available.
)) (speaker)	Beeper on for continuity or limits testing. Digital input/output or analog output active (set to non-default value). $4 W$
~AC	4-wire resistance or 4-wire RTD temperature reading displayed.
AUTO	AC function selected (ACV, dB, or ACI).
Auto range enabled.	
BUFFER	Recalling readings stored in buffer.
CHAN	Setup or a reading for a switching channel displayed.
DELTA	Channel average enabled.
ERR	Questionable reading or invalid cal step.
FAST	Fast reading rate selected.
FILT	Filter enabled for selected function.
HIGH	Reading has reached or exceeded the enabled high limit.
HOLD	2790 in hold mode.
LSTN	Instrument addressed to listen over GPIB.
LOW	Reading has reached or exceeded the enabled low limit.
MATH	mX+b, percent, m/X + b, or a low ohms calculation enabled.
MED	Medium reading rate selected.
MON	Monitor channel displayed.
OCOMP	4-wire offset compensated ohms enabled.
RATIO	Channel ratio enabled.
REAR	Front panel input terminals disconnected.
REL	Relative enabled for selected function.
REM	Instrument in GPIB remote mode.
SCAN	Scanning operation being performed.
SHIFT	Accessing a shifted key.
SLOW	Slow reading rate selected.
SRQ	Service request over GPIB.
STAT	Displaying buffer statistics.
STEP	Stepping operation being performed.
TALK	Instrument addressed to talk over GPIB bus.
TIMER	Timer controlled triggering in use.
TRIG	External triggering selected (trigger link, TRIG key, or GPIB).

5 INPUTS switch:

Use to select front panel inputs (out; F) position or switching module inputs (in; R) position.

NOTE For remote programming, the following command queries the INPUTS switch position:

SYSTem:FRSWitch? ' Query INPUTS switch; 0 = rear, 1 = front.

6 Handle:

Pull out and rotate to desired position.

7 Front panel inputs:

INPUT HI and LO Used for DCV, ACV, $\Omega 2$, CONT, FREQ, PERIOD, and thermistor TEMP measurements.
SENSE HI and LO Use with INPUT HI and LO for $\Omega 4$ and RTD TEMP measurements.
AMPS Use with INPUT LO for DCI and ACI measurements.
Amps fuse holder Holds current fuse for front panel amps input.

Rear panel summary

The rear panel of Model 2790 is shown in Figure 1-2. As shown, a slot cover is installed on slot 2 .

WARNING Slot covers must be installed on unused slots to prevent personal contact with high voltage circuits.

Figure 1-2
Model 2790 rear panel

1 DIGITAL I/O

Male DB-9 connector for digital input (trigger link in) and digital outputs.

2 TRIG LINK

Eight-pin micro-DIN connector for sending and receiving trigger pulses among connected instruments. Use a trigger link cable or adapter, such as Models 8501-1, 8501-2, 8502, and 8503.

3 RS-232
Female DB-9 connector for RS-232 operation. Use a straight-through (not null modem) DB-9 shielded cable.

4 IEEE-488

Connector for IEEE-488 (GPIB) operation. Use a shielded cable, such as Models 7007-1 and 7007-2.

5 Power module

Contains the AC line receptacle, power line fuse, and line voltage setting. The instrument can be configured for line voltages of $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{VAC}$ at line frequencies of 50 or 60 Hz .

6 Slot 1 and Slot 2

Two slots to accommodate Keithley Model 7751, 7752, 7753, and 7702 switching modules. The Model 2790 is shipped from the factory with slot covers installed. Please note additional slot covers can be requested from Keithley Instruments.

WARNING Slot covers must be installed on unused slots to prevent personal contact with high voltage circuits.

Power-up (QS2)

Line power connection

Follow the procedure below to connect the Model 2790 to line power and turn on the instrument.

1. Check to see that the line voltage indicated in the window of the fuse holder assembly (Figure 1-3) is correct for the operating voltage in your area. If not, refer to "Setting line voltage and replacing fuse," page 1-14.

CAUTION Operating the instrument on an incorrect line voltage may cause damage to the instrument, possibly voiding the warranty.

2. Before plugging in the power cord, make sure that the front panel power switch is in the off (O) position.

Figure 1-3

Power module

Model 2790

3. Connect the female end of the supplied power cord to the AC receptacle on the rear panel. Connect the other end of the power cord to a grounded AC outlet.

WARNING The power cord supplied with the Model 2790 contains a separate ground wire for use with grounded outlets. When proper connections are made, instrument chassis is connected to power line ground through the ground wire in the power cord. Failure to use a grounded outlet may result in personal injury or death due to electric shock.

WARNING The maximum voltage between any switching module terminal and chassis ground is 42 V . DO NOT connect any external sources to switching modules.
4. Turn on the instrument by pressing the front panel power switch to the on (I) position.

Line frequency

The Model 2790 will operate at line frequencies from 45 Hz to 66 Hz , and 360 Hz to 440 Hz . There are no user-settings for line frequency. It is automatically sensed at power-up. The following command can be used to read the line frequency:

```
SYSTem:LFRequency? ' Query power line frequency.
```


Setting line voltage and replacing fuse

A rear panel fuse located next to the AC receptacle protects the power line input of the instrument. If the line voltage setting needs to be changed or the line fuse needs to be replaced, perform the following steps.

WARNING Make sure the instrument is disconnected from the AC line and other equipment before changing the line voltage setting or replacing the line fuse.

1. Place the tip of a flat-blade screwdriver into the power module by the fuse holder assembly (Figure 1-3). Gently push in and up. Release pressure on the assembly and its internal spring will push it out of the power module.
2. Remove the fuse and replace it with the type listed in Table 1-2.

CAUTION For continued protection against fire or instrument damage, only replace fuse with the type and rating listed. If the instrument repeatedly blows fuses, locate and correct the cause of the trouble before replacing the fuse.

3. If configuring the instrument for a different line voltage, remove the line voltage selector from the assembly and rotate it to the proper position. When the selector is installed into the fuse holder assembly, the correct line voltage appears sideways in the window.
4. Install the fuse holder assembly into the power module by pushing it in until it locks in place.

Table 1-2

Fuse ratings

Line voltage	Fuse rating	Keithley P/N
$100 / 120 \mathrm{~V}$	0.25 A, slow-blow $5 \times 20 \mathrm{~mm}$	FU-96-4
$220 / 240 \mathrm{~V}$	0.125 A , slow-blow $5 \times 20 \mathrm{~mm}$	FU-91

Power-up sequence

On power-up, the Model 2790 performs self-tests on its EPROM and RAM and momentarily lights all segments and annunciators. If a failure is detected, the instrument momentarily displays an error message and the ERR annunciator turns on. (Error messages are listed in Appendix B).

NOTE If a problem develops while the instrument is under warranty, return it to Keithley Instruments, Inc., for repair.

If the instrument passes the self-tests, the firmware revision levels are displayed. An example of this display is:

REV: A01 A01
where: First A01 is the main board ROM revision.
Second A01 is the display board ROM revision.
Installed switching modules are then displayed. For example, if there is a Model 7751 installed in slot 1 and a Model 7752 installed in slot 2, the following messages will be displayed:

1:7751 2:7752
If a slot is empty, the message "NONE" will be displayed instead.
If the saved power-on setup is not the factory defaults setup (SYSTem:POSetup PRESet), a message to identify the setup will be briefly displayed ("Defaults and user setups," page 1-18).

After the power-up sequence, the instrument begins its normal display of readings.
NOTE The serial number of the Model 2790 can be displayed by selecting the SNUM item of the SETUP menu. Press SHIFT and then SETUP to access the menu. For remote operation, the serial number can be read using the *IDN? command (see Section 12 for details).

Keyclick

With keyclick enabled, an audible click will sound when a front panel key is pressed. Perform the following steps to disable or enable keyclick:

1. Press SHIFT and then LOCAL to display the present state of KEYCLICK (ON or OFF).
2. Press Δ or ∇ to display the desired keyclick state and press ENTER.

Remote programming

The following command controls keyclick:

```
SYSTem:KCLick <b> ' Enable or disable keyclick.
```

where: = ON or OFF

NOTE Keyclick ON is the FACTORY, *RST, and SYSTem:PRESet default.

Display

Readings are displayed in engineering units (i.e., 100.23 mV), while annunciators indicate various states of operation. See "Front panel summary," page 1-8, for a complete listing of display annunciators.

NOTE The display test allows you to test display digit segments and annunciators. The key test checks the functionality of front panel keys. These tests are accessed by pressing SHIFT and then TEST. (See Section 18.)

Status and error messages

Status and error messages are displayed momentarily. During operation and programming, you will encounter a number of front panel messages. Typical messages are either of status or error variety, as listed in Appendix B.

Remote programming — display

Using remote programming, the Model 2790 can display a custom ASCII message (up to 12 characters). Also, the front panel display and controls can be disabled.

Display commands

The commands are listed in Table 1-3. Details on these commands follow the table.

NOTE Optional command words and queries are not included in Table 1-3. Table 15-2 provides an unabridged list of all display commands.

Table 1-3
Display commands

Command	Description	Default*
DISPlay:TEXT:DATA <a>	Define message (<a> = ASCII characters, up to 12).	(none)
DISPlay:TEXT:STATe 	Enable or disable message mode (= ON or OFF).	OFF
DISPlay:ENABle 	Enable or disable the front panel display $(<\mathrm{b}>=$ ON or OFF).	ON

*SYSTem:PRESet and *RST have no effect on DISPlay commands. The listed defaults are power-on defaults.

DISPlay:TEXT:DATA <a>

Define text message

This command defines the text message for display. A message can be as long as 12 characters. A space counts as a character. Excess message characters results in an error. The characters must be enclosed in either single quotes (' ') or double quotes (" ").

DISPlay:TEXT:STATe ON I OFF

Control (on/off) message for display
This command enables and disables the text message mode. When enabled, a defined message is displayed. When disabled, the message is removed from the display.

A user defined text message remains displayed only as long as the instrument is in remote. Taking the instrument out of remote (by pressing the LOCAL key or sending GTL) cancels the message and disables the text message mode.

DISPlay:ENABle ONIOFF

Control display circuitry

This command is used to enable and disable the front panel display circuitry. When disabled, the instrument operates at a higher speed. While disabled, the display is blanked.

All front panel controls (except LOCAL) are disabled. Normal display operation can be resumed by using the ENABle command to enable the display or by putting the Model 2790 into local mode (press LOCAL).

Programming example

The following command sequence displays the text message "TESTING":

```
DISP:TEXT:DATA 'TESTING' ' Define text message.
DISP:TEXT:STAT ON ' Enable text message mode.
```


Defaults and user setups

Model 2790 can be restored to one of two default setup configurations (FACTory or *RST). The four user-saved setups (SAV0, SAV1, SAV2, or SAV3) can not be set as power on default settings. As shipped from the factory, Model 2790 powers up to the factory (FACT) default settings.

NOTE Closed channels can be saved in a user setup (SAV0, SAV1, SAV2, or SAV3). When the setup is restored, those channels (and only those channels) will be closed. FACT and $* R S T$ defaults opens all channels.

The factory default setup provides continuous triggering, while the *RST default setup places the Model 2790 in the one-shot trigger mode. With one-shot triggering, a measurement is performed whenever the TRIG key is pressed or an initiate command is sent over the remote interface.

The factory and *RST default settings are listed in Table 1-4. Setting differences (Set Diff) between the two default setups are indicated by checkmarks (\checkmark).

For remote programming, the SYSTem:PRESet and *RST commands are used to reset the instrument. The *RST command returns the instrument to the *RST defaults and, for the most part, the SYSTem:PRESet command returns the instrument to the factory default conditions. The exceptions are explained as follows:

- Auto scan and auto channel configuration - FACTory defaults disable auto scan and auto channel configuration, while SYSTem:PRESet has no effect. The *RST defaults (front panel and remote operation) have no effect.
- Memory buffer auto clear - FACTory defaults enable buffer auto clear, while SYSTem:PRESet has no effect. The *RST defaults (front panel and remote operation) have no effect.

The instrument will power up to whichever default setup (FACT or *RST) is saved as the power-on setup.

NOTE At the factory, the factory default setup is saved as the SAV0, SAV1, SAV2, and SAV3 setups.

Saving and restoring setups

Saving a user setup

1. Configure Model 2790 for the desired measurement application.
2. Press SHIFT and then SAVE to access the save setup menu.
3. Press to place the cursor on the present setup (SAV0, SAV1, SAV2, SAV3).
4. Use the Δ or ∇ key to display the desired setup and press ENTER. The instrument returns to the normal measurement state.

Saving a power-on setup

1. Configure Model 2790 for the desired measurement application.
2. Press SHIFT and then SAVE to access the save setup menu.
3. Press the Δ key to display the present power-on (PWR-ON) setup: FACT and *RST.
4. Press to place the cursor on the present power-on setup.
5. Use the Δ or ∇ key to display the desired setup and press ENTER. The instrument returns to the normal measurement state.

Restoring a setup

1. Press SHIFT and then SETUP to access the restore setup menu.
2. Press to place the cursor on the present RESTORE setup (FACT or *RST). Only FACT or *RST is allowed as the power-on setup.
3. Use the Δ or ∇ key to display the desired setup and press ENTER. The instrument returns to the normal measurement state.

NOTE If the settings for a user setup or power-on setup do not match the switching module types presently installed in the Model 2790, error +520 (Saved setup scancard mismatch) occurs when the setup is recalled. The scan list will reset to the factory defaults and all channels will open. However, the saved setup is still retained in memory and can be restored when the matching switching module is later installed.

Table 1-4
Default settings

Setting	Factory	*RST	Set Diff
Auto channel configuration	No (off)	No effect	\checkmark
Autozero	On	On	
Buffer	No effect	No effect	
Auto clear	Yes (on)	No effect	\checkmark
Channel Average	Off	Off	
Closed channels	None	None	
Closure count interval	No effect	No effect	
Continuity			
Beeper	On	On	
Digits	$41 / 2$ digits	$41 / 2$ digits	
Range	$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	
Rate	Fast (0.1 PLC)	Fast (0.1 PLC)	
Threshold level	10Ω	10Ω	
Current (AC and DC)			
Bandwidth (AC)	30	30	
Digits (AC)	51⁄2 digits	51⁄2 digits	
Digits (DC)	6½ digits	61⁄2 digits	
Filter	On	Off	\checkmark
Window	0.1\%	0.1\%	
Count	10	10	
Type	Moving	Repeat	\checkmark
Range	Auto	Auto	
Rate (DC)	Slow (5 PLC)	Slow (5 PLC)	
Rel	Off	Off	
Frequency and Period			
Digits	61/2 digits	61/2 digits	
Range	10 V	10 V	
Rate (aperture)	1 second	1 second	
Rel	Off	Off	
Function	DCV		
GPIB	No effect	No effect	
Address	No effect (16 at factory)	No effect (16 at factory)	
Keyclick	On	On	

Table 1-4 (cont.)
Default settings

Setting	Factory	*RST	Set Diff
Limits	Off	Off	
LO Limit 1	-1	-1	
HI Limit 1	+1	+1	
LO Limit 2	-2	-2	
HI Limit 2	+2	+2	
Line Synchronization	Off	Off	
Math			
$\mathrm{mX}+\mathrm{b}$ and $\mathrm{m} / \mathrm{X}+\mathrm{b}$	Off	Off	
Scale Factor	1.0	1.0	
Scale Factor Tracking	OFF	OFF	
Offset	0.0	0.0	
Units	"X"	"X"	
Percent	Off	Off	
Reference	1.0	1.0	
S1Iohms (7751, 7752, and 7753)	Off	Off	
S2Iohms (7751, 7752, and 7753)	Off	Off	
S1Vohms (7751 and 7753)	Off	Off	
S2Vohms (7751 and 7753)	Off	Off	
Monitor	Off	Off	
Output			
Beeper	Never	Never	
Digital Output	Off	Off	
Logic Sense	High	High	
Pulse	No (off)	No (off)	
Ratio	Off	Off	
Resistance ($\Omega 2$ and $\Omega 4$)			
Digits	61/2 digits	61⁄2 digits	
Filter	On	Off	\checkmark
Window	0.1\%	0.1\%	
Count	10	10	
Type	Moving	Repeat	\checkmark
Offset compensation (OCOMP)	Off	Off	
Range	Auto	Auto	
Rate	Slow (5 PLC)	Slow (5 PLC)	
Rel	Off	Off	

Table 1-4 (cont.)
Default settings

Setting	Factory	*RST	Set Diff
RS-232	Off	Off	
Baud rate	No effect	No effect	
Flow control	XonXoFF	XonXoFF	
Terminator	No effect	No effect	
Scanning	Disabled	Disabled	
Auto scan	No (off)	No effect	\checkmark
Type (Simple or Advanced)	No effect	No effect	
Simple scan			
Minimum channel	101, 201	101, 201	
Maximum channel	No effect	No effect	
Timer	Off	Off	
Reading count	No effect	No effect	
Advanced scan			
Setup	No effect	No effect	
Immediate trigger	On	On	
Limit triggers	Off	Off	
Timer	Off	Off	
Reading count	No effect	No effect	
Temperature			
Digits	5½ digits	$51 / 2$ digits	
Filter	On	Off	\checkmark
Window	0.1\%	0.1\%	
Count	10	10	
Type	Moving	Repeat	\checkmark
Rate	Slow (5 PLC)	Slow (5 PLC)	
Rel	Off	Off	
Sensor	Thermistor	Thermistor	
Units	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	
Timestamp	No effect	No effect	
Triggering	Continuous	One-shot	\checkmark
Delay	Auto	Auto	
Source	Immediate	Immediate	
Reading hold	Off	Off	
Window	1\%	1\%	
Count	5	5	

Table 1-4 (cont.)
Default settings

Setting	Factory	*RST	Set Diff
Voltage (AC and DC)			
dB	Off	Off	
Reference	1.0	1.0	
Digits (AC)	51/2 digits	51⁄2 digits	
Digits (DC)	61/2 digits	$61 / 2$ digits	
Filter	On	Off	\checkmark
Window	0.1\%	0.1\%	
Count	10	10	
Type	Moving	Repeat	\checkmark
Range	Auto	Auto	
Rate (DC)	Slow (5 PLC)	Slow (5 PLC)	
Rel	Off	Off	

Remote programming - default and user setups

Default and user setup commands are listed in Table 1-5.
NOTE The SYSTem:PRESet and *RST defaults are listed in the SCPI tables in Section 15.

Table 1-5
Default setup commands

Commands	Description
SYSTem:PRESet	Restore SYSTem:PRESet defaults.
*RST	Restore *RST defaults.
*SAV <NRf $>$	Save settings as user setup; $<$ NRf $>=0,1,2$, or 3.
*RCL $<$ NRf $>$	Restore user saved setup; $<$ NRf $>=0,1,2$, or 3.
SYSTem:POSetup <name>	Specify power-on setup; <name $>=$ RST, PRESet..

Programming example

```
*SAV 2
' Save present setup in memory location 2.
SYST:POS RST ' Specify *RST setup as the power-on setup.
*RST ' Return 2790 to RST defaults.
*RCL 2 ' Return 2790 to setup stored in memory location 2.
```


Remote programming information

Remote programming information is integrated with front panel operation throughout this manual. Programming commands are listed in tables, and additional information that pertains exclusively to remote operation is provided after each table. The tables may reference you to other sections of this manual.

NOTE Except for Section 11 through Section 15, most programming tables in this manual are abridged. That is, they exclude most optional command words and query commands. Optional command words and query commands are summarized as follows.

Optional command words - In order to be in conformance with the IEEE-488.2 standard, Model 2790 accepts optional command words. Any command word that is enclosed in brackets ([]) is optional and does not have to be included in the program message.
Query commands - Most command words have a query form. A query command is identified by the question mark (?) that follows the command word. A query command requests (queries) the programmed status of that command. When a query command is sent and Model 2790 is addressed to talk, the response message is sent to the computer.

NOTE For complete details, see "Programming syntax," page 10-10.

Quick start exercises (QS3)

This section topic summarizes the following basic instrument operations and provides simple exercises to perform them:

- Basic DMM measurements - front panel inputs.
- Closing and opening channels - Models 7751, 7752, 7753, and 7702.
- Simple scanning - Model 7702 only.
- Trigger and return readings - remote programming.

WARNING For the exercises, it is not necessary to connect an input signal or DUT to the instrument (front panel inputs or switching module inputs). However, if you decide to use an input signal, it is recommended that you keep it at a nonhazardous level ($<42 \mathrm{~V}$) while learning to use the instrument. When testing airbags, do connect any external sources to the test system.

NOTE When using the front panel input terminals, the INPUT switch must be in the
" F " (out) position. The INPUT switch is located on the right side of the front
panel near the input terminals. When using a switching module, the switch must
be in the " R " (in) position.

Basic DMM measurements - front panel inputs

NOTE See Section 3 for details on basic DMM operation.

The Model 2790 is shipped from the factory to power-up to factory defaults. The instrument powers up to a setup that continuously measures DC volts. Some of the default settings for the DCV function include auto range enabled, $61 / 2$-digit resolution, filter enabled, and slow reading rate. These settings provide a good starting point and in many cases, do not need to be changed.
"Starting-point" default settings are also provided for the other measurement functions. Therefore, to perform basic measurements, simply select the desired function and "tweak" the setup (range, rate, filter, digits, etc.) as required.

For remote programming, the instrument is typically used in a non-continuous measurement mode. In this mode, the user (via remote command programming) specifies the number of measurements to perform. *RST defaults place the instrument in a non-continuous measurement mode. Most of the other settings for factory and $*$ RST defaults are the same.

For remote programming, the following command is used to select function.

NOTE Items in brackets ([]) are optional and do not need to be included. Upper case characters are required. Lower case characters are optional and need not be included.

```
[SENSe[1]]:FUNCtion <func> 'Select measurement function.'
    <func> ='VOLTage[:DC]' DCV
        'VOLTage:AC' ACV
        'CURRent[:DC]' DCI
        'CURRent:AC' ACI
        'RESistance' \Omega2
        'FRESistance' \Omega4
        'FREQuency' FREQ
        'PERiod' PERIOD
        'TEMPerature' TEMP
```

Each function can have its own unique setup configuration (i.e., range, digits, speed, etc.). For example, the following command words select range and digits:

```
RANGe[:UPPer] <n> ' Specify expected reading.
RANGe:AUTO <b> ' Enable (ON) or disable (OFF) auto range.
DIGits ' Set display resolution; 3.5, 4.5, 5.5, or 6.5 (digits).
```

The following examples demonstrate how to include the function name in the command string for configuration commands.

```
VOLT:RANG 10 ' Select 10V range for DCV.
RES:RANG:AUTO ON ' Enable auto range for \Omega2.
CURR:DIG 4.5 ' Set DCI for 41/2-digit resolution.
```

NOTE See Section 4 for details on setting range, digits, rate, bandwidth, and filter.

Exercise 1 - Basic DMM measurements

The exercise in Table 1-6 measures 2-wire resistance on the 100Ω range and stores 15 readings in the buffer.

Table 1-6
Exercise 1-Measure resistance - store readings in buffer

	Front panel operation	Command sequence
1	For front panel operation, proceed to step 2. For remote programming, clear the buffer ${ }^{1}$:	TRAC: CLE
2	Restore defaults ${ }^{2}$: Press SHIFT > press SETUP > select RESTORE: FACT.	*RST
3	Select 2-wire resistance function: Press $\Omega 2$.	FUNC 'RES'
4	Select 100Ω range: Press RANGE \triangle to display "RANGE: 100Ω ".	RES:RANG 100
6	Store 15 readings in buffer ${ }^{3}$: Press STORE $>$ set for 000015 RDGS > press ENTER.	SAMP:COUN 15 READ?
7	Recall buffer readings ${ }^{4}$: Press RECALL > use edit keys to display readings. Press EXIT to exit recall mode.	TRAC: DATA?

1. To avoid problems with remote programming, it is good practice to routinely clear the buffer (TRAC:CLE) at the beginning of a program that performs multiple measurements (SAMP: COUN >1). Restoring *RST or FACTory defaults does not clear the buffer.
2. FACTory defaults place the instrument in a continuous measurement mode. *RST places the instrument in a non-continuous measurement mode.
3. READ? triggers and returns 15 readings. These 15 readings are automatically stored in the buffer. See Exercise 5 and 6 for more information on the READ? command.
4. Statistics for buffer readings are also stored in the buffer. For remote programming, TRAC:DATA? only returns the readings that were stored. It does not return buffer statistics. CALC2 commands are used to calculate and return buffer statistics (see Section 6 for details).

Closing and opening channels

NOTE The following discussion assumes a 7751, 7752, or 7753 module installed in slot 1 , and a 7702 module is installed in slot 2 of the mainframe. Switching module installation is covered in Section 2.

An alternative to installing switching modules is to assign the slots as pseudocards using remote programming. The instrument will operate as if a switching module is installed in the slot. To "install" a pseudocard in slot 2, send the following command:

```
SYST:PCAR1 c7751 '"Install" 7751 pseudocard in slot 1.
SYST:PCAR1 c7752 '"Install" 7752 pseudocard in slot 1.
SYST:PCAR1 c7753 '"Install" 7753 pseudocard in slot 1.
SYST:PCAR1 c7702 '"Install" 7702 pseudocard in slot 1.
```


System channel operation (7702 only)

System channel operation is used to connect input channels to the DMM of the Model 2790:

- For a 2-wire function (i.e., DCV), closing a system channel connects the input to the DMM Input of the Model 2790.
- For a 4-wire function (i.e., $\Omega 4$), a channel pair is connected to the DMM when a system channel is closed. The system input channel is connected to DMM Input and the paired input channel is connected to DMM Sense.

Close/open 7702 channels

The following points on operation pertain to system channel operation only:

- Only one input channel (or channel pair) is closed at one time. When you close an input channel, the previously closed input channel(s) will open.
- When a system channel is closed, the channel number will be displayed on the Model 2790. The slot number for the module is also displayed. For example, "103" indicates that system input channel 3 for a module in slot 1 is closed.
- The paired channel for a 4 -wire function is not displayed. Only the system channel number is displayed.
- The 7702 switching module has separate channels reserved exclusively for the DCI and ACI functions; channels 41 and 42 . With the DCI or ACI function selected, only channels 41 and 42 can be closed. These channels cannot be accessed on any other function.

Figure 1-4 shows the front panel keys used to close and open system channels.
Figure 1-4
Front panel keys to close and open channels - system channel operation (7702)

For remote programming, the following three commands are used for basic system operation to open and close input channels:

```
ROUTe:CLOSe <clist> ' Close specified system channel }\mp@subsup{}{}{1}\mathrm{ .
ROUTe:CLOSe? ' Query closed system channel }\mp@subsup{}{}{2
ROUT:OPEN ALL ' Open all channels.
```

1. Only one channel can be specified in the <clist>. For example, to close input channel 3 for a module in slot 1 , the following command would be sent: ROUTe:CLOSe (@103)
2. Only the closed system channel is returned by route: close?. The paired channel for a 4 -wire function is not returned. For example, assume channel 2 in slot 1 is closed. The following response message will be returned:

Exercise 2 - Closing and opening 7702 channels (system channel operation)

The exercise in Table 1-7 demonstrates a sequence to close and open channels of a Model 7702 installed in slot 2 of the mainframe.

Table 1-7
Exercise 2 - Close and open 7702 channels (system channel operation)

	Front panel operation	Command sequence
1	Open all channels*: Press OPEN > display OPEN:ALL > Press OPEN.	ROUT:OPEN ALL
2	Select $\Omega 2$ function: Press $\Omega 2$.	FUNC 'RES'
3	Close system channel 201: Press the key. Channel 1 connects to DMM Input.	ROUT:CLOS (@201)
4	Close system channel 202: Press the $>$ key. Channel 2 connects to DMM Input.	ROUT:CLOS (@202)
5	Close system channel 206: Press CLOSE > select CLOSE:SINGLE > key in channel $206>$ press ENTER. Channel 6 connects to DMM Input.	ROUT:CLOS (@206)
6	Select $\Omega 4$ function: Press $\Omega 4$. 4W annunciator turns on and channels 6 and 26 connects to DMM Input and Sense.	FUNC 'FRES'
7	Open all channels*: Press OPEN > display OPEN:ALL > Press OPEN	ROUT:OPEN ALL

*It is a good, safe practice to start and end a switching sequence by opening all channels.

Multiple channel operation

Keithley 7751, 7752 and 7753 switching module channels can only be controlled using multiple channel operation. This allows individual control of all module channels (switches).

Close/open channels

The following points on operation pertain to multiple channel operation only:

- Only the specified channel(s) will close or open.
- All unspecified channels are not affected. Unspecified closed channels remain closed. Unspecified open channels remain open.
- When a channel is closed, the channel number will not be displayed on the Model 2790.

Figure 1-5 shows the front panel keys used to close and open channels.
Figure 1-5
Front panel keys to close and open channels - multiple channel operation

A. Specifiying channel to close
B. Opening all channels
C. Specifiying channel to open

For remote programming, the following three commands are used for basic system operation to open and close input channels:

```
ROUTe:MULT:CLOSe <clist> ' Close specified channel(s).
ROUTE:MULT:CLOSe? ' Query closed system channel(s).
ROUT:OPEN ALL ' Open all channels.
```


Exercise 3 — Closing and opening 7751/7752/7753 channels (multiple channel operation)

The exercise in Table 1-8 demonstrates a sequence to close and open channels of a Model 7751/7752/7753 installed in slot 1 of the mainframe.

Table 1-8
Exercise 3 - Close and open 7751/7752/7753 channels (multiple channel operation)

	Front panel operation	Command sequence
1	Open all channels*: Press OPEN > display OPEN:ALL > Press OPEN.	ROUT:OPEN ALL
2	Select $\Omega 2$ function: Press $\Omega 2$.	FUNC 'RES'
3	Close channels to connect input channel 101 to DMM Input of 2790: Press CLOSE > display CLOSE:MULTI > key in $101>$ press ENTER > key in $114>$ press ENTER $>$ key in $118>$ press ENTER $>$ press EXIT	$\begin{aligned} & \text { ROUT : MULT : CLOS } \\ & (@ 101,114,118) \end{aligned}$
4	Open all channels*: Press OPEN > display OPEN:ALL > Press OPEN	ROUT:OPEN ALL

[^2]
Simple scanning (7702)

NOTE See Section 7 for details on scanning.
With a Model 7702 installed in the mainframe, the instrument can scan channels that are valid for the selected function.

For front panel operation, Figure 1-6 shows the three basic steps to configure and run a simple scan. The differences between the STEP function and the SCAN function involve the reading count and the timer.

Reading count (RDG CT) - For both STEP and SCAN, the reading count specifies the number of readings to store in the buffer. For STEP, the reading count determines the number of channels to scan.

For SCAN, the reading count also determines the number of scans to perform and is best explained by an example. Assume there are 10 channels in the scan list (i.e., 101 through 110). If you set the reading count to 10 or less, one scan of the 10 channels will be performed. If you set the reading count to any value from 11 to 20 , two scans will be performed. A reading count from 21 to 30 gives you three scans, and so on.

Timer interval (TIMER) - For the STEP function, the timer specifies the time delay between scanned channels. For the SCAN function, the interval specifies the time delay between scans. The timer starts when the scan is started. For SCAN, the next scan will not start until the timer interval expires.

NOTE The Model 2790 can also be configured to run an advanced scan. For an advanced scan, each channel can have its own unique setup (i.e., function, range, etc.). Advanced scanning is covered in Section 7.

Figure 1-6

Simple scan operation

Step 1. Configure simple scan:

Step 3. Disable scan mode:

For remote programming, the following commands are used for simple scanning:

```
ROUTe:SCAN <clist> ' Define scan list*.
TRIGger:COUNt <n> ' Specify number of scans (1 to 55000 or
    INFinity).
SAMPle:COUNt <n> ' Specify number of channels to scan (1 to
    55000).
ROUTe:SCAN:LSELect <name> ' Enable (INT) or disable (NONE) scan.
```

* Any valid switching module channel can be included in the scan list. Make sure to list them from the lowest numbered channel to the highest. For example, to scan channels 1 through 8 of a Model 7702 installed in slot 2, send the following command to define the scan list:

```
ROUTe:SCAN (@201:208)
```


Exercise 4-Simple scanning

The scanning example in Table 1-9 assumes a Model 7702 installed in slot 2 of the mainframe. The scan will use default settings (DCV) to scan eight channels and store the readings in the buffer.

Table 1-9

Exercise 4 - Simple scanning

	Front panel operation	Command sequence
1	For front panel operation, proceed to step 2. For remote programming, clear the buffer:	TRAC: CLE
2	Restore defaults ${ }^{1}$: Press SHIFT > press SETUP > select RESTORE: FACT.	*RST
3	Configure scan: Press SHIFT > press CONFIG $>$ select INT: SIMPLE $>$ set MIN CHAN201 > set MAX CHAN: $208>$ select TIMER? NO $>$ set RDG CT:000008.	$\begin{aligned} & \text { ROUT:SCAN ((@201:208) } \\ & \text { SAMP:COUN } 8 \end{aligned}$
4	Enable and start scan ${ }^{2}$: Press STEP.	ROUT:SCAN:LSEL INT INIT
5	Halt (disable) scanner: Press SHIFT > press HALT.	ROUT:SCAN:LSEL NONE
6	Recall the eight stored readings: Press RECALL > use edit keys to display readings. Press EXIT to exit recall mode.	CALC1: DATA?
7	Open all channels: Press OPEN > display OPEN:ALL > Press OPEN	ROUT: OPEN ALL

[^3]
Trigger and return readings — remote programming

There are several commands used to trigger and return readings. The proper commands and sequence to use depend on the trigger state (continuous or non-continuous) and what you are trying to accomplish.
Presented here are three fundamental command sequences that can be used to "trigger and return readings." These three command sequences (exercises) will accommodate most basic measurement scenarios. Simply use the command sequence (exercise) that satisfies your needs:

- Exercise 5 - Trigger and return a single reading
- Exercise 6 - Trigger and return multiple readings
- Exercise 7 - Return a single reading (continuous triggering)

Details on the commands to trigger and return readings are provided in other sections of this manual. For details, refer to the following sections:

Section 8 - Explains the triggering process.
Section 13 - Covers Signal oriented measurement commands (i.e., FETCh?, READ?).
Section 15 - See Table 15-10 (Trigger command summary).
Appendix C - Shows how trigger and read commands control data flow within the instrument.

NOTE Each exercise indicates the commands used to configure triggering ("Trigger configuration"). Once triggering is configured, the commands to trigger and/or return readings can be repeated as often as desired (unless noted otherwise).

Exercise 5 - Trigger and return a single reading Exercise 6 - Trigger and return multiple readings

Trigger controlled measurements - The instrument is typically used in a noncontinuous trigger mode. In this mode, commands are used to trigger one or more readings. After the specified number of readings are completed, the measurement process stops.

Exercise 5 in Figure 1-7 provides a command sequence to trigger and return one reading. Exercise 6 in Figure 1-8 provides a command sequence to trigger and return multiple readings.

Figure 1-7
Exercise 5 - Trigger and return a single reading

Return result of MATH Return Basic Reading ${ }^{3,4}$ calculation ${ }^{1,2,3}$

1. If a MATH function is enabled, the result of the calculation will be returned (MATH functions are covered in Section 5).
2. If there is no MATH function enabled, FETCh? and CALC:DATA? will return the basic reading.
3. FETCh?, CALC:DATA? and DATA? do not trigger readings. They simply return the last reading. If you again send one of these commands before triggering a new reading, the old reading will be returned.
4. DATA:FRESh? can only be used once to return the same reading. Sending it again without first triggering a new reading will cause error -230 (data corrupt or stale).

Figure 1-8
Exercise 6 - Trigger and return multiple readings

1. In order to trigger and return multiple readings, the buffer must first be cleared of readings that were stored by the TRACe command or front panel operation (see Section 6 for details on buffer operation).
2. INIT triggers the measurements and FETCh? returns the readings. Again, sending FETCh? without first sending INIT will return old readings.
3. READ? performs an INIT to trigger the measurements and then FETCh? to return the reading(s).
4. Triggered readings are automatically stored in the buffer. Statistics for buffer readings are also stored in the buffer. CALC2 commands are used to calculate and return buffer statistics (see Section 6 for details).

Exercise 7 — Return a single reading (continuous triggering)

Readings can be returned while the instrument is in the continuous measurement (trigger) mode. Each time a read command is sent, the latest reading is returned. Exercise 7 in Figure 1-9 provides a command sequence to return a single reading while in the continuous trigger state.

Figure 1-9
Exercise 7 - Return a single reading (continuous triggering)

1. If a MATH function is enabled, the result of the calculation will be returned. If there is no MATH function enabled, FETCh? and CALC:DATA? will return the basic reading. MATH functions are covered in Section 5.
2. None of these read commands trigger measurements. They simply return the latest reading. If FETCh?, CALC:DATA?, or DATA? is again sent before a new reading is triggered, the old reading will be returned.
3. DATA:FRESh? can only be used once to return the same reading. Sending it again before a new reading is triggered will cause error - 230 (data corrupt or stale).

Closing and Opening Switching Module Channels

- Test system safety precautions - Summarizes the system's safety precautions.
- Close/open overview - Summarizes the two operating modes to control switching modules; multiple channel operation and system channel operation.
- Switching module installation and connections - Explains how to install a switching module (or pseudocard) into the Model 2790 mainframe. Also explains where to find connection information that should only be performed by qualified service personnel.
- Channel assignments - Explains the format for specifying the mainframe channel assignment which is made up of the slot number and switching module channel number.
- System channel operation (7702 only) — Provides detailed information for using system channel operation.
- Multiple channel operation - Provides detailed information for using multiple channel operation.
- Identifying installed modules and viewing closed channels - Explains how to use the CARD menu to identify installed switching modules and view closed channels.
- Models 7751, 7752, and 7753 switching modules - Covers operating characteristics that are unique to the Models 7751, 7752, and 7753. Also includes a simplified schematic diagram of the switching modules.
- Model 7702 switching module - Covers operating characteristics that are unique to the Model 7702. Also includes a simplified schematic diagram of the switching module.
- Memory patterns - Provides detailed descriptions of memory pattern commands.

Test System Safety Precautions

The Model 2790 SourceMeter ${ }^{\circledR}$ switch system is designed for applications that include very sensitive devices that can be damaged or destroyed by excessive energy levels. Therefore, the mainframe and all plug-in modules have been designed with this fact in mind to ensure reliable, accurate performance with a minimum level of risk of damage to the device under test. However, the inherent flexibility of the Model 2790, particularly when augmented by the addition of a 7702 switch module, can cause certain compromises to system reliability if certain precautions are NOT understood and taken.
In order to preserve and maintain specified performance when the Model 2790 is used in a mixed-mode system application, the following caveats must be strictly complied with:

1. External energy sources should never be applied directly to a 7751,7752 , or 7753 module for any reason. Damage to the module and any connected devices under test can result due to the application of improperly selected or performing external energy sources.
2. For applications that include the use of mainframe measurement functions in addition to those using 7751/7752/7753 modules, interconnected using a Model 7702 switch module, external energy sources can, in the case of a single hardware or software programming error or fault, become connected directly to unintended device under test connections. In such system applications, it is the system designer/builders sole responsibility to ensure that under all such potential fault conditions, no hazardous or damaging situations are created.
3. The 7702 module is designed to handle DC peak voltages up to 300 V generated by external and potentially unlimited energy type sources. When the 7702 module is used in conjunction with the $7751 / 7753$ module, it can be used safely up to the full output voltage capability of the 7751/7753 V-source (500V DC peak). This DOES NOT imply the 7702 module can be used with EXTERNAL SOURCES (i.e., non7751/7753 derived) above 300V DC peak.
4. Since the Model 2790 was designed for a number of sensitive device applications, reasonable precautions were taken in the designs of all Keithley mainframes and modules. However, addition of external equipment cannot be 100% anticipated by Keithley and therefore becomes the sole responsibility of the end system designers and builders regarding the creation of any hazardous or damaging situations and such implies to personal, product safety, or other business implications.

Close/open overview

There are two modes of close/open operation:

- Multiple channel operation - This mode of operation provides individual control of each switching module channel.
- System channel operation - When you close a system input channel (or channelpair) on the Model 7702 switching module, other channels close automatically to internally connect it the DMM of the Model 2790. Note that system channel operation is not available for the Models 7751, 7752, and 7753 switching modules.

WARNING NEVER connect an external source to the Model 7751, 7752, or 7753 module. Not only can an external source cause damage to the module, but there is the possibility of igniting an inflator under test if the wrong channel(s) is closed.

WARNING An external source can be used with a 7702 module. However, when testing airbags or other devices that present a danger from unlimited energy sources, NEVER connect an external source to the Model 2790 front panel inputs or a 7702 module.

CAUTION If using an external source with the 7702 model or with the front panel inputs of the Model 2790, make sure that incorrect channel closures do not connect the external source to the 7751/7752/7753 module via the backplane of the Model 2790. Current $>100 \mathrm{~mA}$ from an external source could damage the 7751/7752/7753 module.

NOTE For system channel operation, the instrument will display the "OVERFLOW" message when 303 V is exceeded.

However, for multiple channel operation, the "OVERFLOW" message will not occur until the maximum voltage of the mainframe (not module) is exceeded. Therefore, the "OVERFLOW" message would occur only if 1010 V is exceeded.

WARNING Careless multiple channel operation with external sources could create an electric shock hazard that could result in severe injury or death. Improper operation can also cause damage to the switching modules and external circuitry. Multiple channel operation should be restricted to experienced test engineers who recognize the dangers associated with multiple channel closures.

NOTE The Model 2790 can scan switching module channels of the Model 7702 switching module. Each channel in the scan can have its own unique setup configuration. Scanning is covered in Section 7.

A Model 2790 with firmware revision A04 and later can scan memory patterns for the 7751/7752/7753 modules (see "Memory patterns," page 2-36). Each memory pattern can have its own unique setup configuration.

NOTE When a setup is saved as a user setup (SAV0, SAV1, SAV2, or SAV3), closed channels are also saved. When the setup is restored, those channels (and only those channels) will be closed (see "Defaults and user setups," page 1-18).

Switching module installation and connections

In order to exercise close/open operations explained in this section, a switching module (or pseudocard) must be installed in the mainframe. A switching module can be installed by the user, however external connections to the switching module are only to be performed by qualified service personnel.

NOTE For inexperienced users, it is recommended that DUT and external circuitry not be connected to switching modules. This will allow you to exercise closelopen operations without the dangers associated with live test circuits.

WARNING To prevent electric shock that could result in injury or death, NEVER handle a switching module that has power applied to it:

- Before installing (or removing) a switching module, make sure the Model 2790 is turned off and disconnected from line power.
- If the switching module is already connected to DUT, make sure power is removed from all external circuitry.

Module installation

WARNING Slot covers must be installed on unused slots to prevent personal contact with high voltage circuits.

NOTE Only one Model 7753 can be installed in a Model 2790, and it should be installed in slot 1. A 7753 can be installed in slot 2, but measurement accuracy might be reduced because cards are always calibrated in slot 1 .

Perform the following steps to install a switching module into the Model 2790 mainframe:

1. Turn the Model 2790 off and disconnect the power line cord and any other cable connected to the rear panel. Position the Model 2790 so you are facing the rear panel.
2. Remove the slot cover plate from the desired mainframe slot. Retain the plate and screws for future use.
3. With the top cover of the switching module facing up, slide the module into an empty slot. For the last $1 / 4$ inch or so, press in firmly to mate the module connector to the mainframe connector.
4. On each side of the module, there is a mounting screw. Tighten these two screws to secure the module to the mainframe. Do not overtighten.
5. Reconnect the power line cable and any other cables to the rear panel.
6. When you turn on the Model 2790, the model number of the switching module will be briefly displayed.

Connections

WARNING Connection information for switching modules is intended for qualified service personnel. Do not attempt to connect DUT or external circuitry to a switching module unless qualified to do so.

WARNING To prevent electric shock that could result in serious injury or death, adhere to the following safety precaution:

- Before making or breaking connections to the switching module, make sure the Model 2790 is turned off and power is removed from all external circuitry.

WARNING Use at least 20AWG wire to connect DUT and external circuitry to the switching modules. Wire and test lead insulation must be rated for at least 1000 V .

WARNING NEVER connect an external source to the Model 7751, 7752, or 7753 module. Not only can an external source cause damage to the module, but there is the possibility of igniting an inflator under test if the wrong channel(s) is closed.

WARNING An external source can be used with a 7702 module. However, when testing airbags or other devices that present a danger from unlimited energy sources, NEVER connect an external source to the Model 2790 front panel inputs, or a 7702 module.

WARNING Dangerous arcs of an explosive nature in a high energy circuit can cause severe personal injury or death. If the multimeter is connected to a high energy circuit when set to a current range, low resistance range, or any other low impedance range, the circuit is virtually shorted. Dangerous arcing can result even when the multimeter is set to a voltage range if the minimum voltage spacing is reduced in the external connections. For details to safely make high energy measurements, see Section 3, "High energy circuit safety precautions."

As described in the International Electrotechnical Commission (IEC) Standard IEC 664, the Model 2790 is Installation Category I and must not be connected to mains.

CAUTION If using an external source with the 7702 model or with the front panel inputs of the Model 2790, make sure that incorrect channel closures do not connect the external source to the 7751/7752/7753 module via the backplane of the Model 2790. Current $>100 \mathrm{~mA}$ from an external source could damage the 7751/7752/7753 module.

Detailed connection and wiring information for the Models 7751, 7752, 7753, and 7702 are provided in the Model 2790 User's Manual.

Pseudocards

Using remote programming, you can assign a pseudocard to an empty switching module slot. With a pseudocard installed, the Model 2790 will operate as if the switching module is installed in the Model 2790. This feature allows you to exercise open/close/scan operations, or configure your system without having the actual switching module installed in the unit. There is a pseudocard for the Model 7702, 7751, 7752, and 7753 switching modules.

A pseudocard cannot be installed from the front panel. However, once it is installed you can take the Model 2790 out of remote and use the front panel. Pressing the LOCAL key takes the Model 2790 out of remote.

When the instrument is turned off, the pseudocard will be lost (uninstalled). Use the following commands to install pseudocards:

```
SYSTem:PCARd1 <name> ' Install pseudocard in slot 1.
SYSTem:PCARd2 <name> ' Install pseudocard in slot 2.
<name> = C7702, c7751, c7752, or c7753
```

Programming example - The following command sets up the Model 2790 to operate as if a Model 7751 switching module is installed in slot 1 , which must be empty. You cannot assign a pseudocard to a slot that already has a switching module installed in it.

```
SYSTem:PCAR1 C7751 ' "Install" pseudocard 7751 for slot 1.
```


Channel assignments

The Model 2790 has two slots for switching modules. To control the appropriate switching module, the slot number must be included with the switching module channel number when you specify a system channel. The system channel assignment is formatted as follows:

SCH where: S is the slot number
CH is the channel number
Examples:
$101=$ Slot 1, Channel 1
$210=$ Slot 2, Channel 10
For remote operation, the 3-digit channel assignment is included in the channel list parameter for the commands. Format examples for the channel list parameter are provided in Table 2-1 and Table 2-2.

System channel operation (7702 only)

NOTE System channel operation only applies to the Model 7702 switching module. If not using a 7702 in your test system, you can skip this topic.

The system channel is a closed measurement channel that is internally connected to the internal DMM Input of the Model 2790. The system channel number is displayed on the Model 2790. For a 4 -wire function (i.e., $\Omega 4$), the paired channel for the system channel is internally connected to DMM Sense. The paired channel is not displayed on the Model 2790. When triggered, the DMM performs a measurement and displays it on the Model 2790.

The system channel is selected by closing a measurement channel using the system channel close keys. These include the \downarrow and keys or the CLOSE key (SINGLE menu option). See "Controlling the system channel," page 2-9, for details.
Other important points about system channel operation include the following:

- There can only be one system channel. This is the 7702 channel that is presently displayed (and closed) on the Model 2790. When a channel is not displayed, there is no system channel.
- When a measurement channel is closed, the input backplane isolation channel also closes to connect the system channel to DMM input. For a 4-wire function, the paired channel and the sense backplane isolation channel also close to make the sense connections to the DMM.
- When a different measurement channel is closed, the previous system channel opens. The newly closed (and displayed) measurement channel becomes the system channel.
- The system channel close keys can only close measurement channels that will automatically connect to the DMM. Non-measurement channels cannot be closed by the system channel close keys.

NOTE Use the VIEW option of the CARD menu to display all closed channels in the mainframe (see "CARD теnu," page 2-26).

2-wire functions

Figure 2-1 shows an example of how the system channel is connected to the DMM Input of the Model 2790. Assume a Model 7702 switching module is installed in slot 2 of the mainframe. When channel 201 is closed using the system channel close keys, both the Channel 1 relay and the backplane isolation relay (Channel 45) close to connect the channel to the DMM. The complete simplified schematic of the Model 7702 is provided in Figure 2-13.

Figure 2-1
7702 2-wire system channel connections to Model 2790 DMM

4-wire functions (paired channels)

A 4 -wire function, such as $\Omega 4$, requires that another measurement channel be paired to the system channel. For example, if the switching module has 40 measurement channels, channels 1 through 20 can be used as the system channel, while channels 21 through 40 are used as the paired channel. For a switching module that has 40 measurement channels, channel 1 is paired to channel 21 , channel 2 is paired to channel 22 , channel 3 is paired to channel 23 , and so on.

Figure 2-2 shows an example of system channel connections for a 4-wire function. Assume a Model 7702 switching module is installed in slot 2 of the mainframe and a 4 -wire function, such as $\Omega 4$, is selected. When channel 201 is closed using the system channel close keys, the Channel 1 relay and the input backplane isolation relay (Channel 45) closes to connect the channel to DMM Input. Also, the Channel 21 relay and the sense backplane isolation relay (Channel 44) close to connect the paired channel to DMM Sense. Also note in Figure 2-2 that the Channel 43 relay closes to isolate channel 1 from channel 21.

The complete simplified schematic of Model 7702 is provided in Figure 2-13.

Figure 2-2
7702 4-wire system channel connections to Model 2790 DMM

Controlling the system channel

When a 7702 measurement channel is closed, a previous system channel (and, for a 4-wire function, its paired channel) is opened. The closed measurement channel becomes the system channel. When a 4 -wire function is selected, the paired channel for the system channel also closes.

and $>$ keys

These front panel keys (Figure 2-3) can be used to select the next or previous 7702 measurement channel as the system channel. If there are no measurement channels available, one of the following messages will be briefly displayed when one of these keys is pressed:

NO SCAN CARD - This message indicates that there are no switching modules (or pseudocards) installed; both slots are empty.

NO MEAS CARD - This message indicates that none of the installed switching modules (or pseudocards) are a 7702. For example, the Model 7751 and 7752 switching modules do not have any measurement channels. Those channels cannot be internally connected to the DMM.

NOTE The \longleftarrow and keys can also be used to open all channels in the mainframe. Simply increment or decrement the channel number until there is no channel displayed.

Figure 2-3
System channel operation - closing next or previous 7702 measurement channel

CLOSE key (SINGLE menu option)

The SINGLE menu option for the CLOSE key can be used to select a measurement channel as the system channel (Figure 2-4). Perform the following steps to select the system channel:

1. Press the CLOSE key. The "CLOSE:SINGLE" message will be displayed.

NOTE If the "CLOSE:MULTI" message is instead displayed when CLOSE is pressed,

 it indicates that there is not a 7702 module installed in the mainframe.2. With "CLOSE:SINGLE" displayed, press ENTER to display the prompt to close a channel (CLOSE CH: XXX).
3. Using \downarrow, Δ, and ∇, key in the three-digit channel you want to select.
4. Press ENTER. The channel closes and the CHAN annunciator turns on.

An invalid channel cannot be closed and will cause one of the following error messages to be briefly displayed:

INVALID CHAN - This message indicates that the channel is not a valid measurement channel. The following actions will cause this error:

- Trying to close a paired-channel while on a 4 -wire function. For the Model 7702, channels 1 through 20 are paired to channels 21 through 40 for a 4 -wire function. If, for example, you try to close channel 22 while on the $\Omega 4$ function, the INVALID CHAN error will occur.
- Trying to close a switching module channel that does not exist.

TOO SMALL or TOO LARGE - These messages also indicate an invalid channel. TOO SMALL indicates that the specified channel and any other lower numbered channel is invalid. TOO LARGE indicates that the specified channel and any other higher numbered channel is invalid.

Figure 2-4
System channel operation — specifying 7702 measurement channel to close

OPEN key (ALL menu option)

The ALL menu option of the OPEN key opens all channels for all switching modules installed in the Model 2790 (Figure 2-5). For example, if a Model 7702 switching module is installed in slot 2, OPEN: ALL will open all measurement channels (201 to 240, 241, and 242), the backplane isolation channels (244 and 245), and the 2-pole/4-pole channel (243). Figure 2-2 shows the backplane isolation channels and the 2-pole/4-pole channel for the Model 7702.

Perform the following steps to open all channels:

1. Press the OPEN key to display "OPEN: ALL."
2. Press OPEN a second time (or press ENTER) to open all channels.

NOTE Opening the system channel disables Ratio or Channel Average. Ratio and Channel Average operation are covered in Section 5.

Figure 2-5
Opening all channels in mainframe

Remote programming - system channel control commands

The commands to close and open the system channel are listed in Table 2-1. When a system channel reading is returned, the system channel number will be included in the data string if the CHANnel data element is selected. The FORMat:ELEMents command is used to specify the data elements to be included in the data string (see FORMat commands in Section 14).

Table 2-1
7702 system channel control commands

Commands	Description	Ref
ROUTe:CLOSe <clist>	Specify one measurement channel to close.	a
ROUTe:CLOSe:STATe? <clist>	Query closed channels in specified list (1 = closed).	b
ROUTe:CLOSe?	Returns a <clist> of closed measurement channels.	c
ROUTe:OPEN:ALL	Open all channels and disable ratio and channel average.	d
<clist> = (@SCH)		
where: $\mathrm{S}=$ Mainframe slot number (1 or 2)		
$\mathrm{CH}=$ Switching module channel number (must be 2 digits)		
Examples: (@101)= Slot 1, Channel 1		
(@101, 203) = Slot 1, Channel 1 and Slot 2, Channel 3		
$(@ 101: 110)=$ Slot 1, Channels 1 through 10		

Reference:

a. ROUTe:CLOSe <clist>

This command functions the same as the front panel CLOSE key (SINGLE menu option) to select the system channel. Only one measurement channel can be specified in the <clist>.

Trying to close an invalid channel (such as a non-measurement channel) with this command will result in error -222 (Parameter data out of range).
b. ROUTe:CLOSe:STATe? <clist>

This query returns a " 0 " (open) or " 1 " (closed) for every measurement channel specified in the <clist>. For example, assume <clist> = (@ 101, 104, 107, 102). The response message " $0,0,1,0$ " indicates that channel 107 is closed.
The state of non-measurement channels cannot be checked with this command.
c. ROUTe:CLOSe?

This query command returns a <clist> of closed measurement channels, including paired channels for 4 -wire functions.
This query command will not return non-measurement channels, such as backplane isolation channels and the pole-mode channel.
d. ROUTe:OPEN:ALL

This command functions the same as the front panel OPEN key (ALL menu option). It simply opens all channels (including non-measurement channels) installed in the mainframe.

Remote programming example (system channel operation)

The following example assumes a Model 7702 installed in slot 2 and the $\Omega 4$ function of the Model 2790 is selected. This command sequence connects channel 201 and its paired channel (221) to DMM Input and Sense as shown in Figure 2-2.

```
ROUT:OPEN:ALL ' Open all channels.
ROUT:CLOS (@201) ' Close channels 201, 221, 243,
' 244, and 245.
```


Multiple channel operation

Multiple channel operation allows individual control of each channel in the test system. It allows any channel (or channels) in the test system to be closed or opened. Channels for the 7751,7752 , and 7753 modules are controlled using multiple channel operation. The simplified schematic of the 7751/7752/7753 module is shown in Figure 2-12.

> NOTE Multiple channel operation is not typically used to control 7702 switching channels. For most test applications, only system channel operation should be used to control the 7702 module. One exception is when you use the 7702 in conjunction with a 7751/7752/7753 module. In this case, multiple channel operation is recommended to avoid anomalous behavior.

> WARNING When using an external source with a 7702 module, careless multiple channel operation could create a hazard that could result in severe injury or death. Improper operation can also cause damage to the switching modules and external circuitry. Multiple channel operation should be restricted to experienced test engineers who recognize the dangers associated with multiple channel closures.

Some other key points for multiple channel operation include the following:

- Closing a channel using multiple channel operation has no affect on other closed channels. Whatever channels were previously closed, remain closed.
- A channel closed using multiple channel operation is not displayed on the Model 2790. Also, the CHAN annunciator does not turn on when a channel is closed.
- Opening a channel using multiple channel operation has no affect on other closed channels. Only the specified channel opens.

NOTE Use the VIEW option of the CARD menu to display closed channels (see "CARD menu," page 2-26).

Controlling multiple channels

WARNING When using multiple channel operation, you must be very careful when switching external hazardous voltages. If you inadvertently close the wrong channel(s), you could create a shock hazard and/or cause damage to the equipment.

Switching modules use latching relays. That is, closed channels remain closed when the Model 2790 is turned off. Never handle a switching module that is connected to an external source that is turned on. Turn off all power sources before (1) making or breaking connections to the module, and (2) installing (or removing) the module into (or out of) the Model 2790.

Avoiding corrupt measurements

Aside from the safety issues, improper use of multiple channel operation can result in corrupt measurements. For example, assume a 7751 installed in slot 1 and a 7702 installed in slot 2 . If you use multiple channel operation to close channels 101,114 , and 118 , you will connect the DUT at channel 1 of the 7751 to the DMM for measurement.

If you then use system channel operation to close channel 201, the input at channel 201 will connect to the DMM. You now have the DUT at channel 1 of the 7751 and the input on channel 201 of the 7702 connected to DMM Input at the same time, inviting all sorts of problems.

The above problem can be avoided by opening all channels before closing channel 201 as demonstrated by the following sequence:

1. Multiple channel operation - Close channels 101, 114, and 118 for 7751 connection to DMM.
2. Open all channels to disconnect modules from DMM.
3. System channel operation - Close system channel 201 for 7702 to connect to DMM.

CLOSE key (MULTI menu option)

The MULTI menu option for the CLOSE key can be used to close any individual channel in the mainframe (Figure 2-6). Perform the following steps to close a channel:

NOTE Channels closed by the MULTI option of the CLOSE key are not displayed. Use the VIEW option of the CARD menu to display closed channels (see "CARD тепи," page 2-26).

1. Press the CLOSE key and then use the \downarrow or key to display the "CLOSE:MULTI" message.
2. Press ENTER to display the prompt to close a channel (CLOSE MLT:XXX).
3. Using \downarrow, Δ, and ∇, key in the three-digit channel you want to select.
4. Press ENTER to close the channel.

An invalid channel cannot be closed. The error messages associated with system channel operation also apply to multiple channel operation.

Figure 2-6
Multiple channel operation - specifying a channel to close

OPEN key

The OPEN key has two options to open channels: ALL and MULTI. The ALL option simply opens all channels in the mainframe. The MULTI option opens only the specified channel. All other closed channels remain closed. Figure 2-7 summarizes OPEN key operation.

OPEN: ALL - Perform the following steps to open all channels in the mainframe:

1. Press the OPEN key to display "OPEN: ALL."
2. Press OPEN again (or press ENTER) to open all channels.

OPEN: MULTI — Perform the following steps to open only the specified channel:

1. Press the OPEN key. The "OPEN: ALL" message will be displayed.
2. Press the Δ or ∇ key to display the "OPEN: MULTI" message.
3. Press ENTER to display the prompt to open a channel (OPEN MLT:XXX).
4. Using \downarrow, Δ, and ∇, key in the three-digit channel you want to select.
5. Press ENTER to open the channel.

NOTE If the channel you open using OPEN: MULTI is a 7702 system channel (channel number displayed on the Model 2790), the channel will open, but the system channel number will still be displayed (see "Multiple channel operation anomalies (7702 only)," page 2-19).

Figure 2-7
Multiple channel operation - opening one or all channels

Remote programming - Multiple channel control commands

The commands to close and open the system channel are listed in Table 2-2.
Table 2-2
Multiple channel control commands

Commands	Description	Ref
ROUTe:MULTiple:CLOSe <clist> ROUTe:MULTiple:OPEN <clist> ROUTe:OPEN:ALL ROUTe:MULTiple:CLOSe? ROUTe:MULTiple:CLOSe:STATe? <clist>	Specify one or more channels to close. Open channels specified in list. Unlisted channels not affected. Open all channels. Returns a <clist> of all closed channels. Query closed channels in specified list (1 = closed).	d
Channel list parameter: <clist>= (@SCH) where: $\mathrm{S}=$ Mainframe slot number (1 or 2) $\mathrm{CH}=$ Switching module channel number (must be 2 digits) Examples: (@101)=Slot 1, Channel 1 (@101, 203) = Slot 1, Channel 1 and Slot 2, Channel 3 $(@ 101: 110)=$ Slot 1, Channels 1 through 10		

Reference:

a. ROUTe:MULTiple:CLOSe <clist>

This command functions like the front panel CLOSE key (MULTI menu option) to close channels. When you send this command to close the channels specified in the <clist>, only those listed channels will close. Channels not specified are not affected, and channel pairing is disabled for the 7702 module.

NOTE Channels closed by ROUT:MULT:CLOS are not displayed.
b. ROUTe:MULTiple:OPEN <clist>

With this command, you can open one or more switching module channels. When you send this command to open the channels specified in the <clist>, only those listed channels will open. Channels not specified are not affected.
c. ROUTe:OPEN:ALL

This command functions the same as the front panel OPEN key (ALL menu option). It simply opens all channels (including non-measurement channels) in the mainframe.
d. ROUTe:MULTiple:CLOSe?

This query command returns a <clist> of all closed channels, including non-measurement channels and paired channels for 4 -wire functions.
e. ROUTe:MULTiple:CLOSe:STATe? <clist>

This query returns a " 0 " (open) or " 1 " (closed) for every channel specified in the <clist>. It is valid for both measurement and non-measurement channels.
For example, assume 7702 channel 245 is closed, and you use this command to query channels 201, 204, and 245 (<clist> = (@201, 204, 245). The response message returns " $0,0,1$ " to indicate that channels 201 and 204 are open, and channel 245 is closed.

Remote programming example (multiple channel operation)

The following example assumes a Model 7751 installed in slot 1. This command sequence connects a DUT at Bank 1 to the DMM input:

```
ROUT:OPEN:ALL ' Open all channels.
ROUT:MULT:CLOS (@101,114,118) ' Close channels to connect
    channel 1 to DMM.
```

The complete simplified schematic of Model 7751/7752/7753 is provided in Figure 2-12. When finished with multiple channel operation, it is a good, safe practice to open all channels (ROUT: OPEN:ALL).

Multiple channel operation anomalies (7702 only)

NOTE The following anomalies only apply to the 7702 switching module. If not using a 7702 in your test system, you can skip this topic.

- Anomaly \#1 - When you use multiple channel operation to open a 7702 system channel, the channel will open but the system channel number will still be displayed on the Model 2790. For details, see "Anomaly \#1 example - wrong channel displayed."
- Anomaly \#2 - For a 4-wire function, you can use multiple channel operation to open the paired channel for the 7702. If you then use system channel operation to again select the already closed system channel it will not re-close the paired channel. For details, see "Anomaly \#2 example - opening the paired channel."

NOTE The following anomaly examples assume a Model 7702 is installed in slot 2 .

Anomaly \#1 example - wrong channel displayed

The following example closes channel 202 and connects it to the DMM Input. However, the Model 2790 will not display the measurement channel that is closed. It will display channel 201 instead of channel 202.

1. Use the ALL option for the OPEN key to open all channels in the mainframe. Remote programming: ROUT:OPEN:ALL
2. Press the key to close (and display) channel 201. This closes channel 201 (which is the system channel) and channel 245 to connect it to the DMM Input (Figure 2-1).
Remote programming: Rout:CLOS (@201)
3. Use the MULTI option for the CLOSE key to close channel 202. The system channel is not affected. Channels 201, 202, and 245 are now closed.
Remote programming: ROUT:MULT:CLOS (@202)
4. Use the MULTI option for the OPEN key, open channel 201. Even though channel 201 is still being displayed on the Model 2790, it is channel 202 that is actually connected to the DMM Input (channels 202 and 245 closed).
Remote programming: ROUT:MULT:OPEN (@201)
To correctly display the channel that is closed (channel 202), repeat step 1 above to open all channels and then use the key or the rout :CLOS (e202) command to close (and display) channel 202. This closes channel 202 (which is the system channel) and channel 245 to connect it to the DMM Input.

Anomaly \#2 example - opening the paired channel

Assume 4-wire connections to a $1 \mathrm{k} \Omega$ resistor using channels 1 and 21 of the 7702 switching module (in slot 2). Also assume the $\Omega 4$ function is selected. The following procedure demonstrates how careless multiple channel operation can cause an overflow reading even though everything else from the front panel "looks right."

1. Use the ALL option for the OPEN key (OPEN: ALL) to open all channels in the mainframe.
Remote programming: ROUT: OPEN:ALL
2. Press the key to close (and display) channel 201. The following channels close (see Figure 2-2):

- Channel 201 (system channel).
- Channel 245 (connects channel 201 to DMM Input).
- Channel 221 (paired channel for 4 -wire measurements).
- Channel 244 (connects channel 221 to DMM Sense).
- Channel 243 (isolates channel 201 from channel 221).

The Model 2790 will display the $1 \mathrm{k} \Omega$ reading for system channel 201.
Remote programming: Rout:clos (@201)
3. Using the MULTI option for the OPEN key, open channel 221. This opens the connection to DMM Sense and causes an OVRFLW reading. Keep in mind that channel 201 is still closed and displayed as the system channel.
Remote programming: ROUT:MULT:OPEN (@221)
4. In an attempt to clear the overflow reading problem, use the SINGLE option of the CLOSE key to again close channel 201. You might think that this will again close channel 221 to reconnect it to DMM Sense. However, that is not the case. Since channel 201 is still the system channel, selecting it again in this manner is a "no action". Channel 221 does not close.
Remote programming: ROUT:CLOS (@201)
A simple way to resolve the above problem is to repeat step 1 to open all channels and then repeat step 2 to close channel 201. All the listed channels in step 2 will close to make the 4 -wire DMM connection to the $1 \mathrm{k} \Omega$ resistor.

Dual independent multiplexers (7702 only)

NOTE The following discussion only applies to the 7702 switching module. If not using a 7702 in your test system, you can skip this topic.

Using multiple channel operation, the 7702 module can be configured as two independent multiplexers. The 7702 is normally used as a single 1×40 multiplexer, but it can also be configured as two 1×20 multiplexers.

The 7702 module is configured as two multiplexers by using multiple channel operation to close the 2-pole/4-pole relay. The 7702 is configured as two independent multiplexers by closing channel 43. As shown in Figure 2-8, the closed position of channel 43 isolates Multiplexer A (channels 1 through 20) from Multiplexer B (channels 21 through 40).

For the dual multiplexer configuration, only Multiplexer A channels can be internally connected to the DMM of the Model 2790. Closing channel 45 allows channels 1 through 20 to be measured by the DMM.

When using the dual multiplexer configuration, the sense backplane isolation relay (channel 44) must be kept open to isolate Multiplexer B channels from the sense terminals of the DMM (Figure 2-8).

Figure 2-8
Dual multiplexer configuration (7702)

Dual multiplexer application

This application demonstrates how to use the Model 7702 as a dual multiplexer to bias and measure 20 DUT. An external source powers DUT, while the DMM of the Model 2790 measures the output of the DUT. To prevent overloading of the external source, each DUT is powered (and measured) separately.

Figure 2-9 shows the connections for this application. The external source is connected to the Sense terminals of the switching module, and DUT is connected to channels 1 through 20. Channels 21 through 40 are used to connect external power to each DUT.

For this application, the 2-pole/4-pole relay and backplane isolation relays of the switching module are to be controlled as follows:

- Closing channel 43 isolates the input measurement channels (1 through 20) from the external source channels (21 through 40). It also connects the DUT to the external source. This channel must remain closed while testing DUT.
- Opening channel 44 isolates the external source from the backplane of the Model 2790. This channel must remain open while testing DUT.
- Closing channel 45 connects an input channel (1 through 20) to the DMM.

In Figure 2-9, channels 1 and 21 are closed to test DUT 1. A more detailed view of the test for DUT 1 is shown in Figure 2-10. The test for the other DUTs is similar except that different source and measure channels are closed. Closed channels for each DUT test are listed as follows:

Tested device	Closed channels
DUT 1	$1,21,43$, and 45
DUT 2	$2,22,43$, and 45
DUT 3	$3,23,43$, and 45
DUT 4	$4,24,43$, and 45
DUT 5	$5,25,43$, and 45
DUT 6	$6,26,43$, and 45
DUT 7	$7,27,43$, and 45
DUT 8	$8,28,43$, and 45
DUT 9	$9,29,43$, and 45
DUT 10	$10,30,43$, and 45

Tested device	Closed channels
DUT 11	$11,31,43$, and 45
DUT 12	$12,32,43$, and 45
DUT 13	$13,33,43$, and 45
DUT 14	$14,34,43$, and 45
DUT 15	$15,35,43$, and 45
DUT 16	$16,36,43$, and 45
DUT 17	$17,37,43$, and 45
DUT 18	$18,38,43$, and 45
DUT 19	$19,39,43$, and 45
DUT 20	$20,40,43$, and 45

Figure 2-9
Dual multiplexer application connections (7702)

* The source could be the I -source or V -source of the
$7751 / 7752 / 7753$. It could also be an external source
in a non-airbag test system.

Test procedure:

NOTES The following test procedure assumes a Model 7702 switching module installed in slot 2 of the mainframe.
The procedure assumes that the instrument is operating in the continuous measurement (triggering) mode (see "Defaults and user setups," page 1-18).

1. Open all channels. For most switching modules, channels remain closed after the Model 2790 is turned off. Therefore, it is good safe practice to open all channels at the start and end of the test.
Front panel operation: Press OPEN $>$ Display ALL > Press OPEN
Remote programming: Rout: OPEN:ALL
2. Close channels 43 and 45.

Front panel operation: Press CLOSE $>$ Select MULTI $>$ Key in $243>$ Press ENTER
Press CLOSE $>$ Select MULTI $>$ Key in $245>$
Press ENTER
Remote programming: ROUT:MULT:CLOS ($(243,245)$
3. Close channels 1 and 21 to connect DUT \#1 to the DMM and bias supply.

Front panel operation: Press CLOSE $>$ Select MULTI > Key in $201>$ Press ENTER
Press CLOSE $>$ Select MULTI $>$ Key in $221>$ Press ENTER
Remote programming: ROUT:MULT:CLOS (@201,221)
4. Measure DUT \#1.

Front panel operation: Take reading from display
Remote programming: DATA?
5. Open channels 1 and 21.

Front panel operation: Press OPEN > Select MULTI > Key in $201>$ Press ENTER
Press OPEN > Select MULTI > Key in $221>$ Press ENTER
Remote programming: ROUT:MULT:OPEN (@201,221)
6. Modify steps 3,4 , and 5 to test DUT \#2. That is, close channels 2 and 22 , measure DUT \#2, and then open channels 2 and 22.
7. Test the remaining 18 DUT in a similar manner. That is, close the appropriate channels for the DUT, make the measurement, and then open the channels.
8. After the last DUT is tested, repeat step 1 to open all channels.

Figure 2-10
Testing DUT 1

Mutliple channel operation:
Open all channels
Close channel 243
Close channel 245
Close channel 201
Close channel 221

Equivalent Circuit

Identifying installed modules and viewing closed channels

On power-up, the model numbers of installed switching modules are displayed briefly.
If a switching module is removed while the Model 2790 is on, the instrument will operate as if the module is installed. That is, the Model 2790 will operate as if the pseudocard is installed.

NOTE In general, it is not recommended to install or remove switching modules with the power on.

CARD menu

The CARD menu identifies the switching modules installed in the mainframe and is used for the following operations:

- Configure the current source output level (7751, 7752, and 7753) and the voltage source output level (7751 and 7753). The CONFIG option of the CARD menu is a no-op (no operation) for the 7702 module.
- View the channels that are presently closed.

Menu navigation keys - Once in the menu structure, the manual range keys (Δ and ∇) and the cursor keys ($\boldsymbol{\iota}$ and) are used to display menu items and options, and set parameter values. With the desired item, option, or setting displayed, press the ENTER key to select it. You can cancel a pending selection (and exit the menu structure) by pressing the EXIT key.

Press the SHIFT key and then the CARD key to display the CARD menu. The Card menu tree is shown in Figure 2-11. The items and options of the menu are explained as follows:

> NOTE Identifying installed modules - If you simply want to identify installed modules or pseudocards, select CONFIG or VIEW and use the Δ or ∇ key to check each slot. When finished, press EXIT.

CARD: CONFIG - This menu item is used to enable and set the I-source output (7751, 7752 , and 7753) and the V-source output (7751 and 7753). The channels of the 7702 switching module do not need to be configured.

SLOTX: 7751, 7752, or 7753 — Press ENTER to configure the 7751 or 7752 module in Slot X (where $\mathrm{X}=1$ or 2). If a 7751,7752 , or 7753 is not installed, the instrument will exit from the menu when ENTER is pressed:
I-C27:01.00 mA - Set the output level of the I-source (00.00 to 50.00 mA). The default I-source setting is 1 mA .
V-C28:050.0 - For the 7751 or 7753, set the output level of the V-source. (0050.000 to 500.00 V).

Figure 2-11

CARD menu tree

CARD: VIEW - This menu item is used to view all channels that are presently closed.
The channels are built into a string that scrolls the display. Four dots identify the end of the string. Model 7751 example (Slot 1) - Assume the following string is scrolling across the display:

101, 114, $118 \ldots$
The above scrolling string identifies the 7751 channels closed to connect channel 1 to the DMM. The complete simplified schematic of the 7751/7752/7753 is shown in Figure 2-12.

SLOTX: 77xx - Use to scroll the closed channels for the switching module in Slot X (where $\mathrm{X}=1$ or 2).

Scrolling speed - The scrolling speed of the channel string is adjustable or can be paused. The $<$ key slows down scrolling speed and the key speeds it up. The ENTER key pauses scrolling. Press ENTER a second time to resume scrolling.
Exiting VIEW - To exit from VIEW, press the EXIT key. Pressing an instrument setting key will also exit VIEW, but it will also perform the operation associated with the key. For example, pressing $\Omega 2$ will exit VIEW and select the $\Omega 2$ function.

NOTE When a command is received while the display is scrolling, the instrument exits from the CARD теnu and the command is executed.

Switching module queries (remote operation)

For remote operation, there are commands to identify installed switching modules and channels that are closed. There are also commands to acquire general information about the installed modules.

*OPT?

For remote operation, the *OPT? command can be used to determine which switching modules (or pseudocards) are installed in the Model 2790. For example, assume a Model 7751 is installed in slot 1, and the other slot is empty. After sending *OPT? and addressing the Model 2790 to talk, the following response message will be sent to the computer:

7751, NONE

ROUTe:CLOSe?

ROUTe:MULTiple:CLOSe?
ROUTe:MULTiple:CLOSe:STATe? <clist>
These query commands are used to determine closed switching module channels.
Rout : clos? is used to return a list of closed 7702 channels including the paired channel for 4 -wire measurements. It will not return non-measurement channels. For details, see Table 2-1 and related reference information.

ROUT:MULT:CLOS? is used to return all closed channels (measurement and non-measurement). For details, see Table 2-2 and related reference information.

ROUT: MULT:CLOS:STAT? is used to return the state (open or closed) of each specified channel. A " 0 " is returned for an open channel and a " 1 " is returned for a closed channel. For details, see Table 2-2 and related reference information.

SYSTem:CARD commands

There is a series of SYSTem:CARD commands that can be used to acquire the following information about a switching module installed in the Model 2790:

- Return the serial number and firmware revision.
- Determine the maximum allowable voltage.
- Determine if the module supports multiplexer or isolated channels.
- Determine which channels are used for volts/2-wire measurements and which are used for amps.

The SYSTem:CARD commands are covered in Table 15-8.

Relay closure count

The Model 2790 keeps an internal count of the number of times each module relay has been closed. The total number of relay closures are stored in EEPROM on the card. This count will help you determine if and when any relays require replacement (see module contact life specifications).

Relay closures are counted only when a relay cycles from open to closed state. If you send multiple close commands to the same channel without sending an open command, only the first closure will be counted.

Relay closure count can only be read via remote operation. The commands are summarized in Table 2-3. Details follow the table.

Table 2-3
Relay closure count commands

Commands	Description	Default
ROUTe:CLOSe:COUNt? <clist> ROUTe:CLOSe:COUNt:INTerval <NRf> ROUTe:CLOSe:COUNt:INTerval?	Query close count for specified channels. Set count update interval in minutes (10 to 1440). Query relay count update interval.	Note
Channel list parameter: <clist> = (@SCH) where: $\mathrm{S}=$ Mainframe slot numbe $\mathrm{CH}=$ Switching module chan Examples: (@101)= Slot 1, Channel (@101, 203) = Slot 1, Ch (@101:110) = Slot 1, Ch	(1 or 2) nnel number (must be 2 digits) 1 annel 1 and Slot 2, Channel 3 annels 1 through 10	

Note: Relay count interval set to 15 minutes at the factory. SYSTem:PREset and *RST have no effect on the set interval.

NOTE The relay closure count can be reset to zero. For details, see Section 18 of this
manual.

Reading relay closure count

To determine the closure count of specific channels, send this query via remote:

```
ROUTe:CLOSe:COUNt? <clist>
```

Here, <clist> is the summary of channels. For example, to determine the closure count of channels 1 and 4 of a module in slot 1 , the following query would be sent:

ROUT:CLOS: COUN? (@101,104)
The following query would determine the closure count of slot 1 module channels 1 through 10:

ROUT:CLOS:COUN? (@101:110)

Setting count update interval

Relay closure counts are updated in temporary RAM every time a channel is closed regardless of how it was closed: by an SCPI command, front panel control, or during a scan. These counts are permanently written to the EEPROM on the card only at a user-set time interval (which is initially set to 15 minutes at the factory) or whenever the counts are queried. Valid intervals (set in integer number of minutes) are between 10 and $1440 \mathrm{~min}-$ utes (24 hours).

The lower the interval, the less chance there is of losing relay counts due to power failures. However, writing to the EEPROM more often may reduce scanning throughput. The higher the interval, the less scanning throughput is reduced, but more relay counts may be lost in the event of a power failure.

NOTE If the Model 2790 is turned off before the updated count is written to EEPROM, the relay counts will be lost. It is good practice to add the ROUT:CLOS:COUN? <clist> command at the end of a program to manually update the count.

To set the count update interval, send this command:

```
ROUTe:CLOSe:COUNt:INTerval <NRf>
where; <NRf> = 10 to 1440 (minutes)
```

For example, to set the interval to 30 minutes, send this command:

```
ROUT:CLOS:COUN:INT 30
```


Models 7751, 7752, and 7753 switching modules

The simplified schematic diagram of the 7751/7752/7753 module is shown in Figure 2-12.
NOTE Connection and wiring procedures for the 7751,7752, and 7753 are to be performed by qualified service personnel. This information is provided in the Model 2790 User's Manual.

Switching module capabilities

NOTE Details on the individual components of the 7751, 7752, and 7753 modules are provided in the Model 2790 User's Manual.

Channels 1-12 - Input channels for DUT (four of which are 1 Form A switches).
Channels 13-19 — Provides signal connections to backplane of Model 2790.
Channel 20 - When closed, the cable discharge circuit is connected across the input channels. Used to dissipate charge build-up due to capacitance in cables and signal paths.

Channel 21 - Closing this channel connects the selected source to the input channels.
Channel 22 - Selects the source. When open, the I-source is selected. When closed, the V-source is selected.

Channel 23 - Closing this channel connects the I/V amplifier. The I/V amplifier is used with the V-source to measure the insulation resistance of an airbag inflator.

Channel 24 - Closing this channel connects the dry circuit for the I-source. Used when testing an inflator shunt. It limits voltage to 20 mV .

Channel 25 - Use to perform I-source readback - When closed, the actual output of the I-source can be read by the DMM of the Model 2790.

NOTE Operating modes:
 System channel operation - No.
 Multiple channel operation —Yes. All channels controlled individually allowing multiple channels to be closed.

Figure 2-12
Model 7751/7752/7753 simplified schematic

Model 7702 switching module

NOTE Connection and wiring procedures for the Model 7702 are to be performed by qualified service personnel. This information is provided in the packing list provided with the module.

Switching module capabilities

Channels 1 through 40 - The Model 7702 can multiplex one of 40 2-pole signals or one of 204 -pole signals into the input of the Model 2790.

Channels 41 and 42 - The Model 7702 can multiplex one of two 2-pole current signals into the input of the Model 2790.

> WARNING The 7702 module is designed to handle DC peak voltages up to 300 V generated by external and potentially unlimited energy type sources. When the 7702 module is used in conjunction with the $7751 / 7753$ module, it can be used safely up to the full output voltage capability of the 7751/7753 V-source (500V DC peak). This DOES NOT imply the 7702 module can be used with EXTERNAL SOURCES (i.e., non-7751/7753 derived) above 300 V DC peak.

CAUTION To prevent damage to the Model 7702 switching module, do not exceed these maximum signal levels:

Channels 1-40: $\quad 300 \mathrm{VDC}$ or RMS, 1 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$
Channels 41, 42: $\quad 60 \mathrm{VDC}$ or 30V RMS, 3A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$
NOTE The 7702 module is safe to use with the 500V source of the 7751/7753 module. The V-source is energy limited and classified as a non-hazardous source per EN61010.

NOTE Operating modes:

System channel operation —Yes. Of the 42 measurement channels, only one channel (or channel pair) can be closed at the same time. When you close a channel (or channel pair), all other measurement channels will open. The user has no control of channels 43, 44, and 45. The open/close state of these channels is determined by the selected function.
Multiple channel operation - Yes. All channels can be controlled individually allowing multiple channels to be closed.

When the Model 2790 is on the DCV, ACV, $\Omega 2$, CONT, $\Omega 4$, FREQ, PERIOD, or TEMP function, channels 1 through 40 are available. When on a current function (DCI or ACI), channels 41 and 42 are the only available channels.

The Model 7702 can accommodate 4 -wire measurements by using channel pairs. Primary channels 1 through 20 become paired to channels 21 through 40 . For example, with the $\Omega 4$ function selected, channel 1 becomes paired to channel 21 . For example, when you close channel 1 , channel 21 will also close.
The 2-wire functions include DCV, ACV, DCI, ACI, $\Omega 2$, CONT, FREQ, PERIOD, and TEMP (thermistor). The 4-wire functions/operations include $\Omega 4$, TEMP (4-wire RTD), RATIO, and CH AVG (ratio and channel average are covered in Section 5).

With a 4-wire function/operation selected, channels are paired as follows:

CH1 and CH21	CH11 and CH31
CH2 and CH22	CH12 and CH32
CH3 and CH23	CH13 and CH33
CH4 and CH24	CH14 and CH34
CH5 and CH25	CH15 and CH35
CH6 and CH26	CH16 and CH36
CH7 and CH27	CH17 and CH37
CH8 and CH28	CH18 and CH38
CH9 and CH29	CH19 and CH39
CH10 and CH30	CH20 and CH40

Schematic diagram

The simplified schematic diagram of the Model 7702 is shown in Figure 2-13. Channels 1 through 40 are used for all measurements except amps. Channels 41 and 42 are used for amps only.

There are two backplane relays (channels 44 and 45) to connect the input channel(s) to the backplane of the Model 2790. With a 2-wire function (except amps) selected, channel 45 will close; and with a 4 -wire function selected, both channels 44 and 45 will close.

There is a 2-pole/4-pole relay (channel 43) between channels 1-20 and channels 21-40. When a 2-wire function (i.e., DCV) is selected, channel 43 opens (2-pole position) to allow any of the 40 channels to be connected to the input backplane.

When a 4-wire function is selected, channel 43 closes (4-pole position) to isolate channels 1 through 20 from channels 21 through 40 . With a system channel (1 through 20) closed, its paired channel (21 through 40) will also close to connect the sense channel to the sense backplane.

For the two current channels (41 and 42), signal HI and LO are routed directly to the backplane when the channel is closed.

As shown in Figure 2-13, there are also screw terminals labeled "Card Input" and "Card Sense". The Card Input and Card Sense terminals are connected to the inputs of channels 44 and 45 (isolation relays). If channels 1 through 40 are not intended to be connected to the internal DMM, channels 44 and 45 can be controlled independently using multiple channel operation.

Figure 2-13
Model 7702 simplified schematic

Memory patterns

NOTE Memory patterns are supported in Model 2790 units with firmware A04 and higher. The firmware revision level is displayed as part of the power-up cycle.

Description

Most Model 2790 tests follow the same basic procedure: select a source and set its level, configure the Model 2790 measurement, close the necessary relays, and take a reading. Memory Patterns simplify this process, allowing you to store combinations of multiple closed channels, source settings, and DMM measurement configurations in nonvolatile memory. Up to 40 such Memory Patterns, designated M1 through M40, can be stored. There is also memory pattern M0, which is defined as an "all-open" pattern. Recalling M0 opens all channels and resets all sources to their factory default values. Similar to closing one 7702 channel and taking a reading, you can recall an individual Memory Pattern to close multiple channels and take a reading. More importantly, you can include Memory Patterns in a scan list and cause the Model 2790 to automatically scan through the specified memory locations. As each memory pattern is scanned, the sources and DMM are configured appropriately, the specified group of channels is closed, and a reading is taken. Reading limits can also be assigned to each memory pattern so that during a scan the readings will automatically be inspected for PASS/FAIL conditions. Digital outputs corresponding to these conditions are also available.

NOTE Memory patterns can be used only with the following functions: DC volts, 2-wire ohms, and 4-wire ohms.

Recalling memory patterns from the front panel

Memory patterns cannot be defined from the front panel, but they can be recalled once defined by remote commands (see below). To recall defined memory patterns from the front panel:

1. Press CLOSE.
2. Use the RANGE Δ and ∇ keys to select CLOSE: MEMORY, then press ENTER.
3. Use \downarrow, Δ, and ∇ to select the memory pattern number (1-40), then press ENTER.

Memory pattern commands

Memory patterns commands are summarized in Table 2-4 and described below.
Table 2-4
Memory pattern commands

Command	Descript	Ref
```:ROUTe :MEMory [:CHANnels] <n>, <clist> [:CHANnels]? <n> :SOURce :LEVel <n>, <NRf>, <clist> :LEVel? <n> :DELay <n>, <NRf> :DELay? <n> :RECall <n> :READ [:STATe] <n>, <b> :CLEar <n> :ALL```	ROUTe subsystem:   Path to memory pattern commands: Define channel pattern for memory <n>. Query channel pattern for memory $<\mathrm{n}>$.   Assign source values to channels. Query source values for memory <n>.   Assign a variable delay to memory $<\mathrm{n}>$. Query delay for memory <n>.   Execute memory pattern <n>.   Enable/disable reading for memory $<\mathrm{n}>$. Clear out memory pattern location <n>. Clear out all memory patterns.	b c d e f f g

## Reference:

a. ROUTe:MEMory[:CHANnels] <n>, <clist>

This command creates a channel pattern for memory $<\mathrm{n}\rangle$. When this command is received, memory pattern $<\mathrm{n}>$ is defined to be all of the channels in <clist>.
Invalid channels in the <clist> will cause <n> to be set to all channels open, which is the factory default for all 40 user-adjustable memory patterns. Valid values of $<\mathrm{n}>$ are 1 through 40 , since 0 is reserved as an all-open pattern.
b. ROUTe:MEMory:SOURce:LEVel <n>, <NRf>, <clist>

Assign analog output values to the channels in <clist> that will be output when memory pattern Mn is executed. If any channels in <clist> are not valid analog output channels, Error -221 Settings Conflict results.
c. ROUTe:MEMory:DELay <n>, <NRf>

Assign a variable delay in seconds to memory pattern $\langle\mathrm{n}\rangle$. This delay is in addition to any delays that have been set with the :TRIG:DELay or SAMP:DELay commands and is unique to memory pattern $<\mathrm{n}\rangle$.

NOTE The Model 2790 cannot respond to any GPIB commands or front panel keypresses while executing a memory delay. If the delay is longer than 3 seconds, the display will read "MEMORY DELAY" to indicate that the 2790 is busy.
d. ROUTe:MEMory:RECall <n>

Immediately execute memory pattern $<\mathrm{n}>$, including any source values, channels closures, and measurements defined by that memory pattern location.
e. ROUTe:MEMory:READ[:STATe] <n>, <b>

If this control is set to TRUE, a reading will be collected after the memory pattern has been executed. The reading will be linked to memory pattern <n> and all memory pattern attributes will be associated to the reading.

NOTE The :ROUT:MEM:READ:STAT command applies only to scanning. You must include at least one measurement channel or a memory pattern that takes a reading (ROUT:MEM:READ:STAT x, ON) in the scanlist. Failure to do so results in the scanlist being rejected with Error +702 , "No measurement channel in scanlist".

## f. ROUTe:MEMory:CLEar <n>

Clear out memory pattern $<\mathrm{n}\rangle$, setting all channels in it to open and removing all analog channels from this memory pattern. Furthermore, ROUT:MEM:DEL <n> is reset to zero. It is the ONLY way to remove memory patterns once they have been assigned.
g. ROUTe:MEMory:CLEar:ALL

Clear out ALL memory pattern locations 1-40 as described above.
NOTE Memory patterns are not cleared by *RST or SYST:PRES, so the ROUT:MEM:CLE commands are the only way to clear them.

## Memory pattern command options

All CALCulate, SENSe, and UNIT subsystem commands with a <clist> (channel list) parameter associated with Model 2790 DC volts, 2-wire ohms, and 4-wire ohms measurement functions can include a memory pattern optional <clist> parameter (@Mn) that allows you to assign those functions to specific memory pattern locations. For example, the following command selects the 2-wire ohms measurement function for memory pattern location \#1:
:SENS:FUNC 'RES',(@M1)
Once various attributes are assigned to memory pattern locations, those functions will be executed when those memory pattern locations are recalled, either individually, or while scanning.

## Memory pattern scanning

Once set up, memory patterns can be automatically scanned in the same manner as 7702 module channels. Section 7 has complete information on scanning.

## Memory patterns program example

The basic test procedure for using memory patterns to perform a series of tests on a dualstate inflator (see Figure 2-14) is shown in Table 2-5. See Section 5 of the Model 2790 User's Manual for more details on test procedures.

This procedure sets up nine memory locations for the following tests:

- Contact check
- Test current verification
- Bridgewire A test
- Bridgewire B test
- Shut bar A test
- Shunt bar B test
- Open circuit test voltage verification
- Insulation resistance of leakage path A
- Insulation resistance of leakage path B

After setting up memory locations, the scan is enabled, triggered, and all tests are performed automatically. Readings are stored in the buffer for recall once the scan is complete.

Table 2-5
Command sequence for memory patterns test example

Command sequence	Description
Initial Setup - perform initial setup of instrument, including setting global parameters that apply to all tests to be executed.	
*RST   Delay 2   :FORM:ELEM READ   :SYST:AZER:STAT ON or OFF   :DISP:ENAB ON or OFF	Reset 2790; opens all channels.   Wait a little for reset to finish.   Send READINGS only when data is requested.   Enable or Disable A/D Autozero feature. Disabling increases speed, but A/D accuracy will decrease over time.   Turn front panel display on or off. Turning off display increases speed somewhat.
*** Setup Slot 1 Sources - if the same source settings will be used for all tests, you can set them once as part of an initial setup. If you must change source levels for different tests, then save the source settings in the appropriate Memory Pattern for each individual test:	
$\begin{aligned} & \text { :SOUR:VOLT 500, (@128) } \\ & \text { :SOUR:CURR 0.05, (@127) } \end{aligned}$	Set V-Source to 500V.   Set I-Source 50 mA .
Note: Allow 250 ms maximum settling time for $V$-source whenever source levels are increased. Fall times are much slower and settling times up to 1000 ms may be required whenever source levels are decreased.	
:ROUT:MEM:CLE:ALL	Clear all memory patterns.
Setup Contact Check Test - Memory Pattern Location 1:	
:ROUT:MEM:CHAN 1,(@108,115,118)   :ROUT:MEM:DEL 1,0   :SENS:FUNC 'RES',(@M1)   :SENS:RES:RANG 100,(@M1)   :SENS:RES:NPLC 1,(@M1)   :ROUT:MEM:READ:STAT 1,ON	Specify relays to close.   Set Memory Delay $=0$.   Select 2-wire ohms measurement function.   Select 100 ohm fixed measurement range.   Set A/D integration time to 1 power line cycle, which is 16.67 ms for 60 Hz power.   Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown later in this example.

Table 2-5 (cont.)
Command sequence for memory patterns test example

Command sequence	Description
Setup Test Current Verification - Memory Pattern Location 2:	
```:ROUT:MEM:CHAN 2,(@101,102,118,125,121) :ROUT:MEM:SOUR:LEV 2,0.05,(@127) :ROUT:MEM:DEL 2,0 :SENS:FUNC 'VOLT',(@M2) :SENS:VOLT:RANG 0.1,(@M2) :SENS:VOLT:NPLC 1,(@M2) :ROUT:MEM:READ:STAT 2,ON```	Specify relays to close.   Set Isrc to 50 mA for M2; since this source level is the same as that set in the Initial Setup subroutine, this command can be left out.   Set Memory Delay $=0$.   Select DC volts measurement function.   Select 100 mV fixed measurement range.   Set A/D integration time to 1 PLC.   Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown below.
Setup Bridgewire A Test - Memory Pattern Location 3:	
```:ROUT:MEM:CHAN 3, (@101,102,117,118,121) :ROUT:MEM:SOUR:LEV 3,0.05, (@127) :ROUT:MEM:DEL 3,0 : SENS:VOLT:NPLC 1, (@M3) : CALC1:FORM S1I, ( @M3) : CALC1:STAT ON, (@M3) :ROUT:MEM:READ:STAT 3,ON```	Specify relays to close.   Set Isrc to 50 mA for M3; since this source level is the same as that set in the Initial Setup subroutine, this command can be left out.   Note: You do not need to keep setting sources if they do not change.   Set Memory Delay $=0$.   Set A/D integration time to 1 PLC.   Select S1IOHMS math function; selecting this function automatically selects DCV measurement function and the 1 V measurement range.   Enable the math function.   Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown below.

Table 2-5 (cont.)
Command sequence for memory patterns test example

Command sequence	Description
Setup Bridgewire B Test - Memory Pattern Location 4:	
```:ROUT:MEM:CHAN 4, (@104,105,117,118,121) :ROUT:MEM:SOUR:LEV 4,0.05, (@127) :ROUT:MEM:DEL 4,0 :SENS:VOLT:NPLC 1,(@M4) : CALC1:FORM S1I, (@M4) : CALC1:STAT ON, (@M4) :ROUT:MEM:READ:STAT 4,ON```	Specify relays to close.   Set Isrc to 50 mA for M4; since this source level is the same as that set in the Initial Setup subroutine, this command can be left out.   Set memory delay $=0$.   Set A/D integration time to 1 PLC.   Select S1IOHMS math function; selecting this function automatically selects DCV measurement function and the 1 V measurement range.   Enable the math function.   Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown below.
Setup Shunt Bar A Test - Memory Pattern Location 5:	
```:ROUT:MEM:CHAN 5, (@101,102,112,117,118,121) :ROUT:MEM:SOUR:LEV 5,0.05,(@127) :ROUT:MEM:DEL 5,0 :SENS:VOLT:NPLC 1,(@M5) :CALC1:FORM S1I,(@M5) :CALC1:STAT ON,(@M5) :ROUT:MEM:READ:STAT 5,ON```	Specify relays to close (112 is shunt bar A)   Set Isrc to 50 mA for M5; since this source level is the same as that set in the Initial Setup subroutine, this command can be left out.   Set Memory Delay $=0$.   Set A/D integration time to 1 PLC.   Select S1IOHMS math function; selecting this $f$ unction automatically selects DCV measurement function and the 1 V measurement range.   Enable the math function.   Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown below.

Table 2-5 (cont.)
Command sequence for memory patterns test example

Command sequence	Description
Setup Shunt Bar B Test - Memory Pattern Location 6:	
```:ROUT:MEM:CHAN 6, (@104,105,117,118,121) :ROUT:MEM:SOUR:LEV 6,0.05,(@127) :ROUT:MEM:DEL 6,0 :SENS:VOLT:NPLC 1,(@M6) :CALC1:FORM S1I,(@M6) :CALC1:STAT ON,(@M6) :ROUT:MEM:READ:STAT 6,ON```	Specify relays to close.   Set Isre to 50 mA for M6.   Set Memory Delay $=0$.   Set A/D integration time to 1 PLC.   Select S1IOHMS math function; selecting this function automatically selects DCV measurement function and the 1 V measurement range.   Enable the math function.   Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown below.
Setup Open Circuit Test Voltage Verification - Memory Pattern Location 7:	
```:ROUT:MEM:CHAN 7, (@109,112,122,113,118,123,121) :ROUT:MEM:SOUR:LEV 7,500,(@128) :ROUT:MEM:DEL 7,0.05 :SENS:FUNC 'VOLT',(@M7) :SENS:VOLT:RANG 1000,(@M7) :SENS:VOLT:NPLC 1,(@M7) :ROUT:MEM:READ:STAT 7,ON```	Specify relays to close (109 and 112 are shunt bars).   Set Vsrc to 500 V for M7. Since source level is the same as in Initial Setup routine, this command can be left out.   Set Total Memory Delay $=50 \mathrm{~ms}$, allow 50 ms settling time after changing load on V-source; if also change source level, include an additional 250 ms for total of 300 ms .   Select DC volts measurement function.   Select 1000 V fixed measurement range.   Set A/D integration time to 1 PLC.   Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown below.

Table 2-5 (cont.)
Command sequence for memory patterns test example

Command sequence	Description
Setup Insulation Resistance Test for Leakage Path A - Memory Location 8:	
ROUT:MEM:CHAN 8, (@101,108,109,112,122,116,118,123,121)   :ROUT:MEM:SOUR:LEV 8,500,(@128)   :ROUT:MEM:DEL 8,2   :SENS:VOLT:NPLC 1,(@M8)   : CALC1:FORM S1V, (@M8)   : CALC1:STAT ON, (@M8)   :ROUT:MEM:READ:STAT 8,ON	Specify relays to close (109 and 112 are shunt bars).   Set Vsrc to 500V for M8. Since source level is the same as in Initial Setup routine, this command can be left out.   Set Total Memory Delay $=2 \mathrm{~s}$; V-source will settle completely during this soak period, so additional settling delays are unnecessary.   Set A/D integration time to 1 PLC.   Select S1VOHMS math function; selecting this function automatically selects DCV measurement function and the 10 V measurement range.   Enable the math function.   Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown below.
Setup Insulation Resistance Test for Leakage Path B-Memory Location 9:	
ROUT:MEM:CHAN 9,   ( $@ 104,108,109,112,122,116,118,123,121$ )   :ROUT:MEM:SOUR:LEV 9,500,(@128)   :ROUT:MEM:DEL 9, 2   :SENS:VOLT:NPLC 1,(@M9)   :CALC1:FORM S1V, (@M9)   :CALC1:STAT ON, (@M9)	Specify relays to close (109 and 112 are shunt bars).   Set Vsrc to 500V for M9. Since source level is the same as in Initial Setup routine, this command can be left out.   Set Total Memory Delay $=2 \mathrm{~s}$; V-source will settle completely during this soak period, so additional settling delays are unnecessary.   Set A/D integration time to 1 PLC.   Select S1VOHMS math function; selecting this function automatically selects DCV measurement function and the 10 V measurement range.   Enable the math function.

Table 2-5 (cont.)
Command sequence for memory patterns test example

Command sequence	Description
:ROUT:MEM:READ:STAT 9,ON	Enable measurement during scan; during a scan the measurement is initiated automatically. This does not apply when a memory pattern is recalled as shown below. In the latter case, the reading must be initiated explicitly as also shown below.
Perform the entire inflator test sequence by scanning through the memory locations:	
: ROUT:SCAN   ( @M1 , M2 , M3 , M4 , M5 , M6 , M7 , M8 , M9 )	Set up scan list; specify memory locations to be scanned. They will be scanned in the order in which they are listed.
:TRIG:SOUR IMM	Set Trigger Source to Immediate; trigger event detection is satisfied immediately.
:TRIG:COUN 1	Set Trigger Count to 1.
:SAMP:COUN 9	Set Sample Count to 9 to match number of memory locations being scanned. These Trigger and Sample Count values cause memory locations to be scanned one time.
:TRAC:CLE	Clear the nonvolatile data buffer.
:TRAC:POIN 9	Set buffer size to 9 readings.
:TRAC:FEED CALC1	Store results of math calculations in data buffer; if math function is not enabled, then raw measured data is stored.
:TRAC:FEED:CONT NEXT	Arm or enable the buffer.
:ROUT:SCAN:LSEL INT	Arm or enable the scan.
: INIT	Initiate the scan; one by one the memory locations will be recalled in the order identified in the scan list. The instrument will be configured per the memory location setups and readings will be taken and stored in the data buffer.
Wait for scan to complete.	Use program delay or instrument feature such as *OPC? or Status Registers and SRQ.
:ROUT:SCAN:LSEL NONE	Disable the scan.
:TRAC:FEED:CONT NEVER	Disable the buffer.
: ROUT:OPEN:ALL	Open all relays.

Table 2-5 (cont.)
Command sequence for memory patterns test example

Command sequence	Description
$:$ FORM:ELEM READ	Send READINGS only when data is requested.   Since this is same as specified in the Initial Setup,   this command can be left out.
$:$ TRAC:DATA?	Request data stored in buffer. Enter the readings and   inspect the values - take action as required.
Note: Nine values will be returned in a single string with comma separators between the values. The string   will have to be parsed to obtain the individual readings. The inspection process can actually be automated by   assigning limits to the memory locations. Doing so enables the instrument to identify Pass/Fail conditions   during the scan. The instrument can also be configured to generate digital outputs in response to these   conditions.	
SAMP:COUN 1	Restore Sample Count to 1 for normal (non-scanning)   operation.

Figure 2-14
Test setup for memory pattern test example


## Basic DMM Operation

- DMM measurement capabilities - Summarizes the measurement capabilities of the Model 2790 and covers maximum signal levels for switching modules.
- High energy circuit safety precautions - Provides safety information when performing measurements in high energy circuits.
- Performance considerations - Covers some considerations that affect overall performance including warm-up, autozero, and line synchronization.
- Channel scan list parameter - Summarizes the use of the <clist> parameter which is used throughout this manual to configure scan channels.
- Voltage measurements (DCV and ACV) — Provides detailed information for making basic DC and AC voltage measurements.
- Current measurements (DCI and ACI) — Provides detailed information for making basic DC and AC current measurements.
- Resistance measurements ( $\Omega 2$ and $\Omega 4$ )— Provides detailed information for making resistance measurements. Also covered is offset compensated ohms (OCOMP).
- Temperature measurements - Provides detailed information for making thermistor and 4-wire RTD temperature measurements.
- Frequency and period measurements - Provides detailed information for making frequency and period measurements.
- Continuity testing - Explains how to use the CONT feature to test continuity.
- Remote programming for basic measurements - Covers the commands used to perform basic measurements. Includes some simple programming examples.
- Measurement queries - Summarizes commands typically used to trigger and/or return measured readings.


## DMM measurement capabilities

NOTE Accuracy specifications for all measurement functions are provided in Appendix $A$.

The DMM of the Model 2790 can make the following measurements:
DCV — DC voltage measurements from $0.1 \mu \mathrm{~V}$ to 1000 V .
ACV - AC voltage measurements from $0.1 \mu \mathrm{~V}$ to 750 V .
DCI - DC current measurements from 10nA to 3A.
$\mathrm{ACI}-\mathrm{AC}$ current measurements from $1 \mu \mathrm{~A}$ to 3 A .
$\boldsymbol{\Omega} \mathbf{2}$ - 2-wire resistance measurements from $100 \mu \Omega$ to $120 \mathrm{M} \Omega$.
$\Omega 4$ - 4-wire resistance measurements from $100 \mu \Omega$ to $120 \mathrm{M} \Omega$.
FREQ - Frequency measurements from 3 Hz to 500 kHz .
PERIOD - Period measurements from 333 ms to $2 \mu \mathrm{~s}$.
TEMP - Temperature measurements from $-200^{\circ} \mathrm{C}$ to $630^{\circ} \mathrm{C}$.
CONT - Continuity testing using the $1 \mathrm{k} \Omega$ range.
WARNING NEVER connect an external source to the Model 7751, 7752, or 7753 module. Not only can an external source cause damage to the module, but there is the possibility of igniting an inflator under test if the wrong channel(s) is closed.
$\begin{array}{ll}\text { WARNING } & \begin{array}{l}\text { An external source can be used with a } 7702 \text { module. However, when } \\ \text { testing airbags or other devices that present a danger from unlimited } \\ \text { energy sources, NEVER connect an external source to the Model } 2790 \\ \text { front panel inputs or a } 7702 \text { module. }\end{array}\end{array}$
CAUTION If using an external source with the 7702 model or with the front panel inputs of the Model 2790, make sure that incorrect channel closures do not connect the external source to the 7751/7752/7753 module via the backplane of the Model 2790. Current $>100 \mathrm{~mA}$ from an external source could damage the 7751/7752/7753 module.
$\begin{array}{ll}\text { CAUTION } & \begin{array}{l}\text { An external source can be used with a } 7702 \text { module if not testing } \\ \text { airbags or other hazardous devices. To prevent damage to the } 7702 \\ \text { module, do not exceed these maximum signal levels: }\end{array}\end{array}$
7702 :
Channels 40: $\quad 300 \mathrm{VDC}$ or RMS, 1 A switched, $60 \mathrm{~W}, 125 \mathrm{VA}$
Channels 41, 42: 60 VDC or 30 V RMS, 3 A switched, 60 W , 125VA
NOTE This section shows DUT connections to the front panel inputs of the Model 2790 and to the Model 7702 switching module. Details on connections to the Model 7751, 7752, and 7753 are provided in the Model 2790 User's Manual.

## NOTE The 7702 module is safe to use with the 500V source of the 7751/7753 module. The V-source is energy limited and classified as a non-hazardous source per EN61010.

## High energy circuit safety precautions

To optimize safety when measuring voltage in high energy distribution circuits, read and use the directions in the following warning.

WARNING Dangerous arcs of an explosive nature in a high energy circuit can cause severe personal injury or death. If the multimeter is connected to a high energy circuit when set to a current range or low resistance range, the circuit is virtually shorted. Dangerous arcing can result even when the multimeter is set to a voltage range if the minimum voltage spacing is reduced in the external connections.
As described in the International Electrotechnical Commission (IEC) Standard IEC 664, the Model 2790 is Installation Category I and signal lines must not be directly connected to AC mains.

When making measurements in high energy circuits, use test leads that meet the following requirements:

- Test leads should be fully insulated.
- Only use test leads that can be connected to the circuit (e.g., alligator clips, spade lugs, etc.) for hands-off measurements.
- Do not use test leads that decrease voltage spacing. These diminish arc protection and create a hazardous condition.

WARNING For the front panel inputs, the maximum common-mode voltage (voltage between INPUT LO and the chassis ground) is 500 V peak. For a 7702 module, the maximum common mode voltage is 300 V . Exceeding these values may cause a breakdown in insulation, creating a shock hazard.

NOTE The 7702 module is safe to use with the 500V source of the 7751/7753 module. The V-source is energy limited and classified as a non-hazardous source per ENG1010.

Use the following sequence when testing power circuits:

1. De-energize the circuit using the regular installed connect-disconnect device, for example, by removing the device's power cord or by turning off the power switch.
2. Attach the test leads to the circuit under test. Use appropriate safety rated test leads for this application. If over 42 V , use double insulated test leads or add an additional insulation barrier for the operator.
3. Set the multimeter to the proper function and range.
4. Energize the circuit using the installed connect-disconnect device and make measurements without disconnecting the multimeter.
5. De-energize the circuit using the installed connect-disconnect device.
6. Disconnect the test leads from the circuit under test.

## Performance considerations

## Warm-up

After the Model 2790 is turned on, it must be allowed to warm up for at least two hours to allow the internal temperature to stabilize. If the instrument has been exposed to extreme temperatures, allow extra warm-up time.

## Autozero

To help maintain stability and accuracy over time and changes in temperature, the Model 2790 periodically measures internal voltages corresponding to offsets (zero) and amplifier gains. These measurements are used in the algorithm to calculate the reading of the input signal. This process is known as autozeroing.

When autozero is disabled, the offset and gain measurements are not performed. This increases the measurement speed. However, the zero and gain reference points will eventually drift resulting in inaccurate readings of the input signal. It is recommended that autozero only be disabled for short periods of time.

When autozero is enabled after being off for a long period of time, the internal reference points will not be updated immediately. This will initially result in inaccurate measurements, especially if the ambient temperature has changed by several degrees.

NOTE To force a rapid update of the internal reference points, set the integration rate
to 0.01 PLC and then back to the desired rate (i.e., 1.0 PLC). The NPLC com-
mands to set the integration rate are covered in Section 4.
Remote programming can be used to enable or disable autozero (Table 3-1). Autozero cannot be disabled from the front panel; however, it can be enabled by restoring factory default conditions.

## LSYNC (line cycle synchronization)

Synchronizing A/D conversions with the frequency of the power line increases common mode and normal mode noise rejection. When line cycle synchronization is enabled, the measurement is initiated at the first positive-going zero crossing of the power line cycle after the trigger.

Figure 3-1 shows the measurement process that consists of two A/D conversions. If the trigger occurs during the positive cycle of the power line (Trigger \#1), the A/D conversion starts with the positive-going zero crossing of the power line cycle. If the next trigger (Trigger \#2) occurs during the negative cycle, then the measurement process also starts with the positive-going zero crossing.

Figure 3-1

## Line cycle synchronization



Perform the following steps to enable or disable line cycle synchronization:

1. Press SHIFT and then LSYNC to display the present state of line synchronization (OFF or ON).
2. Use the up or down key to display "LINESYNC ON" or "LINESYNC OFF."
3. Press ENTER. The instrument returns to the normal display state.

NOTE Line synchronization is not available for the AC functions (ACV, ACI, FREQ, or PERIOD) and for integration rates <1 PLC, regardless of the LSYNC setting.

## Remote programming — autozero and LSYNC

## Autozero and LSYNC commands

The commands to control display resolution (digits) are listed in Table 3-1.
Table 3-1
Autozero and LSYNC commands

Commands	Description	Default
Autozero command*   SYSTem:AZERo[:STATe] <b>	Enable or disable autozero; <b>= ON or OFF	ON
Line synchronization command SYSTem:LSYNc[:STATe] <b>	Enable or disable LSYNC; <b> = ON or OFF	OFF

* After enabling autozero, you can update the internal reference points immediately by setting the integration rate to 0.01 PLC and then back to the desired setting (see NPLC commands in Section 4).


## Channel scan list parameter

## 7702 module scanning

Channels of one or two 7702 switching modules installed in the Model 2790 can be scanned. Each scan channel can have its own unique setup. For example, a channel could be set to measure DCV on the 10 V range, while another channel can be set to measure 2 -wire ohms on the $10 \mathrm{k} \Omega$ range.

From the front panel, scan channels are configured from the scan configuration menu as explained in Section 7. For remote programming, the <clist> parameter is used to configure scan channels.

Channel list parameter:
<clist> = (@SCH)
where: $\mathrm{S}=$ Mainframe slot number (1 or 2)
$\mathrm{CH}=$ Switching module channel number (must be 2 digits)
Examples: $\quad(@ 101)=$ Slot 1, Channel 1
(@101, 203) = Slot 1, Channel 1 and Slot 2, Channel 3
$(@ 101: 110)=$ Slot 1, Channels 1 through 10

Throughout this manual, you will encounter commands that can use the <clist> parameter. The <clist> simply indicates that the associated command can be used to configure a scan channel of a 7702 module. For example:

```
SENSe:FUNCtion 'VOLTage:DC' ' Select DCV function.
SENSe:FUNCtion 'VOLTage:DC',(@101) ' Configure scan channel 101 for DCV.
```

While in the normal measurement display state, the first command simply selects the DCV function. The second command configures channel 101 of a 7702 module to measure DCV when it is scanned.

See Section 7 for detailed information on scanning.

## Memory pattern scanning

In addition to 7702 module channels, channels of 7751/7752/7752 modules installed in the Model 2790 can also be scanned by using memory patterns (see "Memory patterns," page 2-36). Each memory pattern location can have its own unique setup that includes channel(s) to close, source level (if any), and measurement function (DCV, $\Omega 2$, and $\Omega 4$ only).

Memory patterns cannot be set up from the front panel. For remote programming, all CALCulate, SENSe, and UNIT subsystem commands with a <clist> parameter associated with Model 2790 DC volts, 2-wire ohms, and 4-wire ohms measurement functions include a memory pattern optional <clist> parameter (@Mn) that allows you to store those functions in specific memory pattern locations.

Channel list parameter using memory pattern location:
<clist> = (@Mn)
where: $\mathrm{M}=$ Memory pattern location command
$\mathrm{n} \quad=$ Memory pattern location (1 to 40)
Examples:

```
SENSe:FUNCtion 'VOLTage:DC',(@M1) ' Configure memory 1 for DCV.
SENSe:FUNCtion 'RES',(@M2) ' Configure memory 2 for 2-wire ohms.
```

See Section 7 for detailed information on scanning.

## Voltage measurements (DCV and ACV)

The Model 2790 can make DCV measurements from $0.1 \mu \mathrm{~V}$ to 1000 V and ACV measurements from $0.1 \mu \mathrm{~V}$ to 750 V RMS, 1000 V peak.

DCV input resistance: $\quad 100 \mathrm{~V}$ and 1000 V ranges: $10 \mathrm{M} \Omega$
$100 \mathrm{mV}, 1 \mathrm{~V}$, and 10 V ranges: $>10 \mathrm{G} \Omega$ II $<400 \mathrm{pF}$ or $10 \mathrm{M} \Omega$
ACV input impedance: $\quad 1 \mathrm{M} \Omega \|<100 \mathrm{pF}$

## DCV input divider

Normally, the input resistance for the $100 \mathrm{mVDC}, 1 \mathrm{VDC}$, and 10 VDC ranges is $>10 \mathrm{G} \Omega$, while the input resistance of the 100 VDC and 1000 VDC ranges is $10 \mathrm{M} \Omega$. However, the input resistance for the three lower DCV ranges can also be set to $10 \mathrm{M} \Omega$ by enabling the input divider.

With the input resistance lowered, a more stable 0 V reading is achieved with an open input. Also, some external devices (such as a high voltage probe) must be terminated to a $10 \mathrm{M} \Omega$ load.

The input divider cannot be enabled from the front panel. For remote programming, the following command controls the input divider:

```
VOLT:IDIVider ' Enable (ON) or disable (OFF) the DCV input divider.
```


## Connections

NOTE Switching module connections shown in this section are specifically for the 7702 module. Test connections for the 7751, 7752, and 7753 modules are provided in the Model 2790 User's Manual.

WARNING Even though the Model 2790 can measure up to 1000 V peak, the maximum input to a switching module is less. Exceeding the voltage rating of a switching module may cause damage and create a safety hazard.

NOTE When using the front panel inputs, the INPUTS switch must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

## Front panel input

When using the front panel input terminals, connect the test leads to the INPUT HI and LO terminals as shown in Figure 3-2.

Figure 3-2
DCV and ACV connections using front panel inputs


Input Resistance $=10 \mathrm{M} \Omega$ on 1000 V and 100 V ranges;
$>10 \mathrm{G} \Omega$ on $10 \mathrm{~V}, 1 \mathrm{~V}$, and 100 mV ranges.

## CAUTION Maximum Input $=1000 \mathrm{~V}$ peak

## A. DCV Connections



Input Impedance $=1 \mathrm{M} \Omega \|<100 \mathrm{pF}$
CAUTION Maximum Input $=750 \mathrm{~V}$ RMS, 1000 V peak, $8 \times \mathbf{1 0}^{7} \mathrm{~V} \cdot \mathrm{~Hz}$
B. ACV Connections

## Model 7702 switching module

Connections for the 7702 switching module are shown in Figure 3-3. For basic DCV and ACV measurements (Figure 3-3A and B), channels 1 through 40 can be used.

Ratio and channel average calculations - Ratio calculates the reading ratio of two channels, while channel average calculates the reading average of two channels. For these calculations, paired switching channels are used. Primary channels 1 through 20 are paired to channels 21 through 40 (channel 1 paired to channel 21, channel 2 paired to channel 22, and so on). As shown in Figure 3-3C, one DC voltage source is connected to a primary channel (i.e., 104) and the other source is connected to its paired channel (i.e., 124).

NOTE The ratio and channel average calculations are covered in Section 5.
Figure 3-3
DCV and ACV connections using Model 7702 switching module
A) DCV connections

B) ACV connections

C) Ratio and channel average connections (DCV)


NOTE The low connections for channels 1 through 20 do not need to be referenced to the low connections for channels 21 through 40.

## Volts measurement procedure

> NOTE Make sure the INPUTS switch is in the correct position. To use front panel inputs, it must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

1. If a switching channel is presently closed (displayed), press OPEN to open it.
2. Select the volts measurement function by pressing DCV or ACV.
3. Use the RANGE $\Delta$ and $\nabla$ keys to select a measurement range consistent with the expected voltage or press AUTO to select autoranging (AUTO annunciator turns on). Details on range are provided in Section 4.
4. Apply the voltage(s) to be measured.

CAUTION Do not apply more than maximum input levels indicated in Figure 3-2 and Figure 3-3 or instrument damage may occur. The voltage limit is subject to the $8 \times 10^{7} \mathrm{VHz}$ product.

Model 7702 switching module - The maximum allowable voltage is 300 V DC or RMS. Exceeding these limits may cause damage to the switching module. (Note: Safe to use with Model 7751/7753 Vsource.)

WARNING If both the front panel terminals and the switching module terminals are connected at the same time, the test leads must be rated to the highest voltage that is connected. For example, if 1000 V is connected to the front panel input, the test lead insulation for the switching module must also be rated for 1000 V .
5. If using a switching module, perform the following steps to close the desired channel:
a. Press the CLOSE key.
b. Use $\downarrow, ~ \triangle$, and $\nabla$ to key in the channel number and press ENTER. The previously closed channel (if there is one) will open and the specified channel will close.

NOTE While in the normal measurement state, you can use the $\downarrow$ and $\downarrow$ keys to close channels. In general, each key press will open the presently closed channel, and then close the next higher or lower channel.
6. Observe the displayed reading. If the "OVERFLOW" message is displayed, select a higher range until a normal reading is displayed (or press AUTO for autoranging). For manual ranging, use the lowest possible range for the best resolution.
7. To measure other switching channels, repeat steps 5 and 6.
8. When finished, press OPEN if there is a channel closed.

## Crest factor

AC voltage (and current) accuracies are affected by the crest factor of the waveform, which is the ratio of the peak value to the RMS value. The maximum crest factor for the Model 2790 is 5 at full scale. See the specifications in Appendix A for details.

## Low level considerations

For sensitive measurements, external considerations beyond the Model 2790 affect the accuracy. Effects not noticeable when working with higher voltages are significant in microvolt signals. The Model 2790 reads only the signal received at its input; therefore, it is important that this signal be properly transmitted from the source. The following paragraphs indicate factors that affect accuracy, including stray signal pick-up and thermal offsets.

## Shielding

AC voltages that are extremely large compared with the DC signal to be measured may produce an erroneous output. Therefore, to minimize AC interference, the circuit should be shielded with the shield connected to the Model 2790 input low (particularly for low level sources). Improper shielding can cause the Model 2790 to behave in one or more of the following ways:

- Unexpected offset voltages.
- Inconsistent readings between ranges.
- Sudden shifts in reading.

To minimize pick-up, keep the voltage source and the Model 2790 away from strong AC magnetic sources. The voltage induced due to magnetic flux is proportional to the area of the loop formed by the input leads. Therefore, minimize the loop area of the input leads and connect each signal at only one point.

## Thermal EMFs

Thermal EMFs (thermoelectric potentials) are generated by temperature differences between the junctions of dissimilar metals. These can be large compared to the signal that the Model 2790 can measure. Thermal EMFs can cause the following conditions:

- Instability or zero offset is much higher than expected.
- The reading is sensitive to (and responds to) temperature changes. This effect can be demonstrated by touching the circuit, by placing a heat source near the circuit, or by a regular pattern of instability (corresponding to changes in sunlight or the activation of heating and air conditioning systems).

To minimize the drift caused by thermal EMFs, use copper leads to connect the circuit to the Model 2790.

For front panel inputs, a banana plug generates a few microvolts. A clean copper conductor such as \#10 bus wire is ideal for this application. For switching modules, use \#20 AWG copper wire to make connections. The leads to the Model 2790 may be shielded or unshielded, as necessary. Refer to "Shielding" in Appendix D.
Widely varying temperatures within the circuit can also create thermal EMFs. Therefore, maintain constant temperatures to minimize these thermal EMFs. A shielded enclosure around the circuit under test also helps by minimizing air currents.
The REL control can be used to null out constant offset voltages.

## AC voltage offset

The Model 2790, at $51 / 2$ digits resolution, will typically display 100 counts of offset on AC volts with the input shorted. This offset is caused by the offset of the TRMS converter. This offset will not affect reading accuracy and should not be zeroed out using the REL feature. The following equation expresses how this offset ( $\mathrm{V}_{\text {OFFSET }}$ ) is added to the signal input ( $\mathrm{V}_{\mathrm{IN}}$ ):
Displayed reading $=\sqrt{\left(\mathrm{V}_{\text {IN }}\right)^{2}+\left(\mathrm{V}_{\text {OFFSET }}\right)^{2}}$
Example: Range $=1 \mathrm{VAC}$
Offset $=100$ counts $(1.0 \mathrm{mV})$
Input $=100 \mathrm{mV}$ RMS
Displayed reading $=\sqrt{(100 \mathrm{mV})^{2}+(1.0 \mathrm{mV})^{2}}$
$=\sqrt{0.01 \mathrm{~V}+\left(1 \times 10^{-6} \mathrm{~V}\right)}$
$=0.100005 \mathrm{~V}$
The offset is seen as the last digit, which is not displayed. Therefore, the offset is negligible. If REL were used to zero the display, the 100 counts of offset would be subtracted from $V_{\text {IN }}$, resulting in an error of 100 counts in the displayed reading.

## Current measurements ( DCl and ACI )

The Model 2790 can make DCI measurements from 10nA to 3A and ACI measurements from $1 \mu \mathrm{~A}$ to 3 A RMS.

NOTE See the previous discussion about crest factor in "Memory pattern scanning," page 3-7.

## Connections

NOTE Switching module connections shown in this section are specifically for the 7702 module. Test connections for the 7751, 7752, and 7753 modules are provided in the Model 2790 User's Manual.

NOTE When using the front panel inputs, the INPUTS switch must be in the "F" (out) position. For switching modules, it must be in the " $R$ " (in) position.

WARNING To prevent electric shock, never make or break connections while power is present in the test circuit.

## Front panel inputs

When using the front panel input terminals, connect the test leads to the AMPS and INPUT LO terminals as shown in Figure 3-4.

Figure 3-4
DCI and ACI connections using front panel inputs
Model 2790


## CAUTION Maximum Input $=3 A$ DC or RMS

## Model 7702 switching module

Connections for the 7702 switching module are shown in Figure 3-5. Note that only channels 41 and 42 can be used for current measurements.

Figure 3-5
DCI and ACI connections using Model 7702 switching module


CAUTION Maximum input: 60VDC or 30 V RMS, 3A switched, 60W, 125VA maximum

## Amps measurement procedure

NOTE Make sure the INPUTS switch is in the correct position. To use front panel inputs, it has to be in the " $F$ " (out) position. For switching modules, it has to be in the " $R$ " (in) position.

1. If a switching channel is presently closed (displayed), press OPEN to open it.
2. Select the amps measurement function by pressing DCI or ACI.
3. Use the RANGE $\Delta$ and $\nabla$ keys to select a measurement range consistent with the expected current or press AUTO to select autoranging (AUTO annunciator turns on). Details on range are provided in Section 4.
4. Apply the current(s) to be measured.

CAUTION Do not apply more than 3A to the input or the AMPS fuse will blow.
Model 7702 switching module - When performing current measurements, the maximum allowable voltage is 60 VDC or 30 V RMS. Exceeding these limits could cause damage to the switching module.
5. If using a 7702 switching module, use the $\boldsymbol{4}$ and keys to close the desired amps channel ( 41 or 42 ). All other channels will be open.
6. Observe the displayed reading. If the "OVERFLOW" message is displayed, select a higher range until a normal reading is displayed (or press AUTO for autoranging). For manual ranging, use the lowest possible range for the best resolution.
7. To measure another amps channel, repeat steps 5 and 6.
8. When finished, press OPEN (ALL) if there is a channel closed.

> NOTE When you have an amps-only channel closed, you cannot select a non-amps function. For example, if channel 41 of the 7702 module is closed, you cannot select the DCV function ("INVALID FUNC" displayed).

## AMPS fuse replacement (front panel AMPS input)

## WARNING Make sure the instrument is disconnected from the power line and other equipment before replacing the AMPS fuse.

1. Turn off the power and disconnect the power line and test leads.
2. From the front panel, gently push in the AMPS fuse holder with a flat-blade screwdriver and rotate the fuse holder one-quarter turn counterclockwise.
3. Remove the fuse and replace it with the same type (3A, 250 V , fast-blow, $5 \times 20 \mathrm{~mm})$. The Keithley part number is FU-99-1.

## CAUTION Do not use a fuse with a higher current rating than specified or instrument damage may occur. If the instrument repeatedly blows fuses, locate and correct the cause of the trouble before replacing the fuse.

4. Install the new fuse by reversing the above procedure.

## NOTE For the Model 7702 switching module, there are solder mount amps fuses. See Section 18 of this manual for fuse replacement information.

## Resistance measurements ( $\Omega 2$ and $\Omega 4$ )

The Model 2790 uses the constant-current method to measure resistance from $100 \Omega$ to $1 \mathrm{M} \Omega$. The Model 2790 sources a constant current (I) to the resistance and measures the voltage (V). Resistance (R) is then calculated (and displayed) using the known current and measured voltage $(\mathrm{R}=\mathrm{V} / \mathrm{I})$. For the $10 \mathrm{M} \Omega$ and $100 \mathrm{M} \Omega$ ranges, the ratiometric method is used to measure resistance.

Standard resistance measurements - The Model 2790 can make resistance measurements from $100 \mu \Omega$ to $120 \mathrm{M} \Omega$. For resistances $>1 \mathrm{k} \Omega$, the 2 -wire $(\Omega 2)$ method is typically used for measurements. For resistances $\leq 1 \mathrm{k} \Omega$, the 4 -wire ( $\Omega 4$ ) measurement method should be used to cancel the effect of test lead (and channel path) resistances.

Offset-compensated ohms (OCOMP) — The presence of thermal EMFs (voltages) can adversely affect low-resistance measurement accuracy. To overcome these unwanted offset voltages, you can use offset compensated ohms on the $100 \Omega, 1 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ ranges for the $\Omega 4$ function.

## Connections

NOTE Switching module connections shown in this section are specifically for the 7702 module. Test connections for the 7751, 7752, and 7753 modules are provided in the Model 2790 User's Manual.

NOTE When using the front panel inputs, the INPUTS switch must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

## Front panel inputs

Connections for resistance measurements are shown in Figure 3-6. For 2-wire resistance measurements ( $\Omega 2$ ), connect the test leads to INPUT HI and LO as shown in Figure 3-6A. For 4-wire resistance ( $\Omega 4$ ), connect the test leads to INPUT HI, INPUT LO, SENSE $\Omega 4 \mathrm{HI}$, and SENSE $\Omega 4$ LO as shown in Figure 3-6B.

Figure 3-6

## $\Omega 2$ and $\Omega 4$ connections for front panel inputs

Model 2790

A. $\Omega 2$ Connections

Model 2790


## B. $\Omega 4$ Connections

NOTE Source current flows from the INPUT HI to INPUT LO terminals.

NOTE Source current flows from the INPUT HI to INPUT LO terminals.

## Model 7702 switching module

Connections for the switching module are shown in Figure 3-7. As shown in Figure 3-7A, each of the 40 channels can be used to perform $\Omega 2$ measurements. For $\Omega 4$ measurements, a channel pair is used for each 4-wire measurement as shown in Figure 3-7B.
For $\Omega 4$ connections, channels 1 through 20 (which are used as the INPUT terminals) are paired to channels 21 through 40 (which are used as the SENSE terminals). Channel 1 is paired to channel 21 , channel 2 is paired to channel 22 , and so on.

Figure 3-7

## $\Omega 2$ and $\Omega 4$ connections for Model 7702 switching module


A. $\Omega 2$ connections


$$
\begin{array}{ll}
\text { NOTE } & \begin{array}{l}
\text { Source current flows from input } \\
\text { high (H) to input low (L). }
\end{array}
\end{array}
$$

B. $\Omega 4$ connections

## Shielding

To achieve a stable reading, it helps to shield resistances greater than $100 \mathrm{k} \Omega$. As shown in Figure 3-6 and Figure 3-7, place the resistance in a shielded enclosure and connect the shield to the input low terminal of the instrument electrically.

## Cable leakage

For high resistance measurements in a high humidity environment, use Teflon ${ }^{\mathrm{TM}}$ insulated cables to minimize errors due to cable leakage.

## Standard resistance measurements

NOTE Make sure the INPUTS switch is in the correct position. To use front panel inputs, it must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

Perform the following steps to measure resistance:

1. If a switching channel is presently closed (displayed), press OPEN to open it.
2. Select the ohms measurement function by pressing $\Omega 2$ or $\Omega 4$.
3. Use the RANGE $\Delta$ and $\nabla$ keys to select a measurement range consistent with the expected resistance or press AUTO to select autoranging (AUTO annunciator turns on). Details on range are provided in Section 4.
4. Connect the resistance(s) to be measured.

## CAUTION Front panel inputs - Do not apply more than 1000V peak between INPUT HI and LO or instrument damage may occur.

Model 7702 switching module - Do not apply more than 300V DC or RMS between input high (H) or input low (L), or switching module damage may occur.

NOTE The 7702 module is safe to use with the 500 V source of the 7751 module. The $V$-source is energy limited and classified as a non-hazardous source per EN61010.
5. If using a switching module, perform the following steps to close the desired channel. Keep in mind, that for $\Omega 4$ measurements, you will close the primary (INPUT) channel (1 through 20). The paired channel will close automatically.
a. Press the CLOSE key.
b. Use $\downarrow, \triangle, \Delta$, and $\nabla$ to key in the channel number and press ENTER. The previously closed channel(s) (if any) will open and the specified channel (or channel pair) will close.

NOTE While in the normal measurement state, you can use the $\downarrow$ and keys to close channels. In general, each key press will open the presently closed channel and then close the next higher or lower channel.
6. Observe the displayed reading. If the "OVERFLOW" message is displayed, select a higher range until a normal reading is displayed (or press AUTO for autoranging). For manual ranging, use the lowest possible range for the best resolution.
7. To measure other switching channels, repeat steps 5 and 6 .
8. When finished, press OPEN if there is a channel closed.

## Offset-compensated ohms

The presence of thermal EMFs ( $\mathrm{V}_{\mathrm{EMF}}$ ) can adversely affect low-resistance measurement accuracy. To overcome these unwanted offset voltages, you can use offset-compensated ohms (OCOMP). Offset-compensated ohms measurements can be performed on the $100 \Omega$, $1 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ ranges for the $\Omega 4$ function. It cannot be done on the $\Omega 2$ function.

NOTE The various instrument operations, including OCOMP, are performed on the input signal in a sequential manner. See "Signal processing sequence," page C-2, for details. It includes a flowchart showing where in the processing sequence that the OCOMP operation is performed.

For a normal resistance measurement, the Model 2790 sources a current (I) and measures the voltage $(V)$. The resistance $(R)$ is then calculated $(R=V / I)$ and the reading is displayed.

For offset-compensated ohms, two measurements are performed: one normal resistance measurement and one using the lowest current source setting.

The offset-compensated ohms reading is then calculated as follows:
Offset-compensated ohms reading $=\Delta \mathrm{V} / \Delta \mathrm{I}$
where: $\Delta \mathrm{V}=\mathrm{V} 2-\mathrm{V} 1$
$\Delta \mathrm{I}=\mathrm{I} 2-\mathrm{I} 1$
V1 is the voltage measurement with the current source at its normal level.
V 2 is the voltage measurement using the lowest current source setting.
The above 2-point measurement process and reading calculation eliminates the resistance contributed by the presence of $\mathrm{V}_{\mathrm{EMF}}$.

## Enabling/disabling offset-compensated ohms

Offset-compensated ohms is enabled by pressing SHIFT and then OCOMP. When enabled, the OCOMP annunciator is on. Offset-compensated ohms is disabled by again pressing SHIFT and then OCOMP.

## Performing offset-compensated ohms measurements

Offset-compensated ohms can only be performed on the $\Omega 4$ function using the $100 \Omega, 1 \mathrm{k} \Omega$, or $10 \mathrm{k} \Omega$ range. Make sure you use 4 -wire connections to the DUT (see "Connections," page 3-8).

NOTE Make sure the INPUTS switch is in the correct position. To use front panel inputs, it must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

1. If a switching channel is presently closed (displayed), press OPEN to open it.
2. Select the 4 -wire ohms measurement function by pressing $\Omega 4$ and enable offset compensated ohms by pressing SHIFT and then OCOMP (OCOMP annunciator turns on).
3. Use the RANGE $\triangle$ and $\nabla$ keys to select the $100 \Omega, 1 \mathrm{k} \Omega$, or $10 \mathrm{k} \Omega$ range, or press AUTO to enable autorange. If using autorange, offset compensated ohms measurements will not be performed if the instrument goes to the $100 \mathrm{k} \Omega$ or higher range.
4. Perform steps 4 through 8 of the "Standard resistance measurements," page 3-19, procedure.

NOTE The OCOMP annunciator will flash when the instrument is on an invalid range (100kS through 100MS ranges) for offset-compensated ohms. Normal ohms measurements will instead be performed.

For buffer recall, there is no way to distinguish between a normal ohms reading and an offset-compensated ohms reading. The OCOMP annunciator (off, on, or flashing) has no significance for recalled resistance readings that are displayed. Buffer operation is covered in Section 6.

With offset-compensated ohms enabled, it will be "remembered" by the $\Omega 4$ function after you change measurement functions (i.e., $D C V$ ). When $\Omega 4$ is again selected, offset-compensated ohms will be enabled.

## Temperature measurements

The Model 2790 can measure temperature using thermistors and 4-wire RTDs. When deciding which temperature sensor to use, keep in mind that the thermistor is the most sensitive, and the 4 -wire RTD is the most stable.

## Thermistors

For thermistors, the temperature measurement range is $-80^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}\left(0.01^{\circ} \mathrm{C}\right.$ resolution). Thermistor types that are supported include the $2.2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ types.

The thermistor is a temperature sensitive resistor. Its resistance changes non-linearly with changes in temperature. Most thermistors have a negative temperature coefficient. As temperature increases, the resistance decreases. The Model 2790 measures the resistance of the thermistor and calculates the temperature reading.

Of all the temperature transducers, the thermistor is the most sensitive. It can quickly detect minute changes in temperature. It is a good choice when measuring very small changes in temperature. The downside for this increased sensitivity is the loss of linearity. Since they are especially non-linear at high temperatures, it is best to use them for measurements below $100^{\circ} \mathrm{C}$.

NOTE Curve fitting constants are used in the equation to calculate thermistor temperature. The thermistor manufacturer's specified curve fitting constants may not be exactly the same as the ones used by the Model 2790. Appendix E provides the equation and the constants used by the Model 2790. It also explains how to select a thermistor when the manufacturer's constants and the ones used by the Model 2790 do not match.

## 4-wire RTDs

For 4-wire RTDs, the temperature measurement range is $-200^{\circ} \mathrm{C}$ to $630^{\circ} \mathrm{C}\left(0.01^{\circ} \mathrm{C}\right.$ resolution). RTD types that are supported include D100, F100, PT385, and PT3916. A USER type is available to modify RTD parameters, such as the resistance at $0^{\circ} \mathrm{C}$. The USER type can be enabled from the front panel, but the settings can only be changed using remote programming.

The RTD has a metal construction (typically platinum). The resistance of the RTD changes with changes in temperature. The Model 2790 measures the resistance and calculates the temperature reading. When using default RTD parameters, the resistance of the RTD will be $100 \Omega$ at $0^{\circ} \mathrm{C}$.

Of all the temperature transducers, the RTD exhibits the most stability and linearity. The Model 2790 performs the 4 -wire measurement using offset compensated ohms. This provides the most accurate way to measure the low resistance of the RTD.

NOTE The equation to calculate temperature vs. resistance readings is listed in the $R T D$ reference tables provided in Appendix $E$.

## Connections

NOTE Switching module connections shown in this section are specifically for the 7702 module. Test connections for the 7751, 7752, and 7753 modules are provided in the Model 2790 User's Manual.

NOTE When using the front panel inputs, the INPUTS switch must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

## Thermistor connections

A thermistor can be connected directly to the front panel inputs or to any of the 40 input channels of the Model 7702 switching module as shown in Figure 3-8.

Figure 3-8
Thermistor connections


## 4-wire RTD connections

Shown in Figure 3-9 are 4-wire RTD connections to the Model 2790. For the 7702 switching module, paired channels are used to perform the 4 -wire measurement. The two input leads of the RTD are connected to a primary channel (1 through 20), while the two sense leads are connected to its paired channel (21 through 40). Channel 1 is paired to channel 21 , channel 2 is paired to channel 22 , and so on.

Figure 3-9
4-wire RTD connections

B. Model 7702 switching module

## Temperature measurement configuration

The Model 2790 is configured to measure temperature from the temperature measurement configuration menu. Use the following general rules to navigate through the menu structure:

- Press SHIFT and then SENSOR to enter the menu structure.
- Cursor position is indicated by a flashing menu item or parameter. Cursor position is controlled by the $\boldsymbol{\downarrow}$ and keys.
- With the cursor on a menu item or parameter, use the $\Delta$ and $\nabla$ keys to scroll through the available options.
- A displayed menu item and parameter is selected by pressing ENTER.
- You can exit from the menu structure by pressing EXIT. However, any ENTERed selections will apply.


## Thermistor temperature measurement configuration

The steps to configure thermistor measurements are provided in Table 3-2. After pressing SHIFT and then SENSOR, the menu starts at step 1 to select measurement units.

Each time you press ENTER to make a selection, the menu will automatically go to the next selection. After pressing ENTER for the last step, the instrument will return to the normal measurement state.

Table 3-2
Thermistor temperature measurement configuration

Step	Menu structure	Description
1	UNITS: C, F, or K	Select temperature measurement units   $\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right.$, or K$)$.
2	SENS: THRMSTR	Select the thermistor transducer.
3	TYPE: $2200 \Omega, 5000 \Omega$, or $10 \mathrm{k} \Omega$	Select thermistor resistance.

## 4-wire RTD temperature measurement configuration

The Alpha, Beta, Delta, and $\Omega$ at $0^{\circ} \mathrm{C}$ parameters for the five basic RTD types are provided in Table 3-3. Note that these parameters can be modified using remote programming.

Table 3-3
RTD parameters

Type	Standard	Alpha	Beta	Delta	$\Omega$ at $0^{\circ} \mathrm{C}$
PT100	ITS-90	0.003850	0.10863	1.49990	$100 \Omega$
D100	ITS-90	0.003920	0.10630	1.49710	$100 \Omega$
F100	ITS-90	0.003900	0.11000	1.49589	$100 \Omega$
PT385	IPTS-68	0.003850	0.11100	1.50700	$100 \Omega$
PT3916	IPTS-68	0.003916	0.11600	1.50594	$100 \Omega$

The steps to configure 4-wire RTD measurements are provided in Table 3-4. After pressing SHIFT and then SENSOR, the menu starts at step 1 to select measurement units.

Each time you press ENTER to make a selection, the menu will automatically go to the next selection. After pressing ENTER for the last step, the instrument will return to the normal measurement state.

NOTE As shown in Table 3-4, you can select the USER sensor type, but you cannot change the USER parameters from the front panel. The parameters for the USER type can only be set using remote programming (see TEMPerature:FRTD commands in Table 3-5).

Table 3-4
4-wire RTD temperature measurement configuration

Step	Menu Structure	Description
1	UNITS: C, F, or K	Select temperature measurement units
$\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right.$, or K$)$.		

## Temperature measurement procedure

NOTE Make sure the INPUTS switch is in the correct position. To use front panel inputs, it must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

1. If a switching channel is presently closed (displayed), press OPEN to open it.
2. Select the temperature measurement function by pressing TEMP.
3. Configure the temperature measurement as previously explained in "Temperature measurement configuration."
4. Connect the temperature transducer(s) to be measured.
5. If using a switching module, perform the following steps to close the desired channel. Keep in mind, that for 4-wire RTD measurements, you will close the primary (INPUT) channel for the 7702 module ( 1 through 20). The channel that it is paired to will close automatically.
a. Press the CLOSE key.
b. Use $\downarrow, \Delta$, and $\nabla$ to key in the channel number and press ENTER. The previously closed channel(s) (if any) will open and the specified channel (or channel pair) will close.

NOTE While in the normal measurement state, you can use the $\boldsymbol{a}$ and keys to close channels. In general, each key press will open the presently closed channel and then close the next higher or lower channel.
6. Observe the displayed reading.
7. To measure other switching channels, repeat steps 5 and 6.
8. When finished, press OPEN if there is a channel closed.

## Frequency and period measurements

The Model 2790 can make frequency measurements from 3 Hz to 500 kHz on voltage ranges of $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$, and 750 V . Period ( $1 /$ frequency) measurements can be taken from $2 \mu$ s to 333 ms on the same voltage ranges as the frequency.

Input impedance: $\quad 1 \mathrm{M} \Omega \|<100 \mathrm{pF}, \mathrm{AC}$ coupled.
The instrument uses the volts input to measure frequency. The AC voltage range can be changed with the RANGE $\Delta$ and $\nabla$ keys. The signal voltage must be greater than $10 \%$ of the full-scale range.

CAUTION The voltage limit is subject to the $8 \times 10^{7} \mathrm{VHz}$ product.

## Trigger level

Frequency and period use a zero-crossing trigger, meaning that a count is taken when the frequency crosses the zero level. The Model 2790 uses a reciprocal counting technique to measure frequency and period. This method generates constant measurement resolution for any input frequency. The multimeter's AC voltage measurement section performs input signal conditioning.

## Gate time

The gate time is the amount of time the Model 2790 uses to sample frequency or period readings. Use the RATE key to set the gate time; SLOW sets the gate time to 1.0 sec , MED sets it to 0.1 sec , and FAST sets it to 0.01 sec . For remote programming, the gate time can be set from 0.01 to 1.0 sec using the FREQuency:APERture and PERiod:APERture commands (Table 3-5). Note however, that if you set a gate time other than $1.0,0.1$, or 0.01 sec , the SLOW, MED, and FAST annunciators will be off.

The Model 2790 completes a reading when it receives its first zero-crossing after the gate time expires. In other words, the reading is completed $1 / 2$ cycle after the gate time has expired. For example, to sample a 3 Hz frequency, you may wait up to three seconds before the Model 2790 returns a reading.

## Connections

NOTE Switching module connections shown in this section are specifically for the 7702 module. Test connections for the 7751 and 7752 modules are provided in the Model 2790 User's Manual.

NOTE When using the front panel inputs, the INPUTS switch must be in the "F" (out) position. For switching modules, it must be in the " $R$ " (in) position.

## Front panel input

When using the front panel input terminals, connect the test leads to the INPUT HI and LO terminals as shown in Figure 3-10.

Figure 3-10
FREQ and PERIOD connections for front panel inputs
Model 2790


Input Impedance $=1 \mathrm{M} \Omega$ in parallel with $<100 \mathrm{pF}$
CAUTION Maximum Input $=1000 \mathrm{~V}$ peak, $8 \times 10^{\mathbf{7}} \mathrm{V} \cdot \mathrm{Hz}$.

## Model 7702 switching module

Connections for the Model 7702 switching module are shown in Figure 3-11. For this 2 -wire measurement, channels 1 through 40 can be used.

Figure 3-11
FREQ and PERIOD connections using Model 7702 switching module


CAUTION Maximum $=300 \mathrm{~V}$ peak or RMS, $8 \times \mathbf{1 0}^{7} \mathrm{~V} \cdot \mathrm{~Hz}$.

## Frequency and period measurement procedure

NOTE Make sure the INPUTS switch is in the correct position. To use front panel inputs, it must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

1. If a switching channel is presently closed (displayed), press OPEN to open it.
2. Perform one of the following steps to select the function:

- Press FREQ to perform frequency measurements.
- Press SHIFT and then FREQ to perform period measurements.

3. Use the RANGE $\Delta$ and $\nabla$ keys to select a measurement range consistent with the expected AC voltage. Details on range are provided in Section 4.
4. Apply the AC voltage(s) to be measured.

CAUTION Do not apply more than the maximum input levels indicated in Figure 3-10 and Figure 3-11 or instrument damage may occur.
5. If using a 7702 switching module, perform the following steps to close the desired channel:
a. Press the CLOSE key and select the SINGLE option.
b. Use $\downarrow, \downarrow, \Delta$, and $\nabla$ to key in the channel number and press ENTER. The previously closed channel (if there is one) will open and the specified channel will close.

NOTE While in the normal measurement state, you can use the $\downarrow$ and keys to close channels. In general, each key press will open the presently closed channel and then close the next higher or lower channel.
6. Observe the displayed reading. If the "OVERFLOW" message is displayed, select a higher range until a normal reading is displayed. Use the lowest possible range for the best resolution.
7. To measure other switching channels, repeat steps 5 and 6 .
8. When finished, press OPEN (ALL) if there is a channel closed.

## Continuity testing

The Model 2790 can test continuity using the 2 -wire $1 \mathrm{k} \Omega$ range. After selecting continuity, you will be prompted to enter the threshold resistance level ( 1 to $1000 \Omega$ ). When the measured circuit is below the set threshold level, the instrument will beep and display the resistance readings. When the measured circuit is above the threshold level, the message "OPEN" will be displayed.

NOTE The reading rate for continuity is fixed at FAST (0.1 PLC).
Limits and digital outputs cannot be used when testing continuity with the continuity (CONT) function. If you need to use these operations, use the $\Omega 2$ function to test continuity.

## Connections

NOTE Switching module connections shown in this section are specifically for the 7702 module. Test connections for the 7751, 7752, and 7753 modules are provided in the Model 2790 User's Manual.

NOTE When using the front panel inputs, the INPUTS switch must be in the "F" (out) position. For switching modules, it must be in the " $R$ " (in) position.

## Front panel input

When using the front panel input terminals, connect the test leads to the INPUT HI and LO terminals as shown in Figure 3-12A.

## Model 7702 switching module

Connections for the Model 7702 switching module are shown in Figure 3-12B. Since this is a 2 -wire ohms measurement, channels 1 through 40 can be used.

Figure 3-12
Continuity connections
A. Front panel connections Model 2790

B. Model 7702 connections


NOTE Source current flows from input high to input low.

## Continuity testing procedure

NOTE Make sure the INPUTS switch is in the correct position. To use front panel inputs, it must be in the " $F$ " (out) position. For switching modules, it must be in the " $R$ " (in) position.

1. Apply the resistance to be tested and if using a switching module, close the appropriate channel(s).
2. Press SHIFT and then CONT to display the present threshold LEVEL.
3. Use $\downarrow, \downarrow, \Delta$, and $\nabla$ to key in the desired level ( 1 to $1000 \Omega$ ) and press ENTER.
4. If the measurement is below the threshold level, the beeper will sound and the ohms reading will be displayed. If the measurement is above the threshold level, the message "OPEN" will be displayed.
5. To disable continuity testing, select a different function (i.e., press DCV).

NOTE The beeper can be disabled using the SYSTem:BEEPer:STATe OFF command. However, the beeper will automatically enable the next time the continuity testing function is selected.

Limits and digital outputs cannot be used when testing continuity with the continuity (CONT) function. If you need to use these operations, use the $\Omega 2$ function to test continuity.

## Remote programming for basic measurements

## Basic measurement commands

NOTE When measurements are performed, the readings are fed to other enabled processing operations. Appendix C explains "Data flow (remote operation)" and the commands used to return the various processed readings.

Commands to perform basic measurements are listed in Table 3-5.
Table 3-5
Basic measurement commands

Commands ${ }^{1}$	Description	Default	Ref
Select measurement function   [SENSe[1]]   :FUNCtion <name> [, <clist>]	Optional root command.   Select measurement function:   <name> = 'VOLTage[:DC]',   'VOLTage:AC', ‘CURRent[:DC]',   'CURRent:AC’, 'RESistance',   'FRESistance', 'TEMPerature,'   ‘CONTinuity', 'FREQuency', or 'PERiod'.   Note: [:DC] is optional.	VOLT	a*
DCV function   [SENSe[1]]   :VOLTage[:DC]:IDIVider <b>	Optional root command.   Enable/disable DCV input divider; $<\mathrm{b}>=\mathrm{ON}$ or OFF.	OFF	
[SENSe[1]] $\quad$ 台 function :FRESistance:OCOMpensated <b> $[$, <clist>]	Optional root command.   Enable/disable offset-compensated ohms.	OFF	$\mathrm{b}^{*}$

[^4]
## Table 3-5 (cont.)

Basic measurement commands

Commands ${ }^{1}$	Description	Default	Ref
TEMP function			
[SENSe[1]]	Optional root command.		
:TEMPerature:TRANsducer <name> [, <clist>]	Select temperature transducer; <name>= FRTD or THERmistor.	THER	
:TEMPerature:THERmistor <NRf> [, <clist>]	Set thermistor type in ohms; $<\mathrm{NRf}>=1950 \text { to } 10050 .$	5000	h*
:TEMPerature:FRTD:TYPE <name> [, <clist>]	Select FRTD type; <name> = PT100, D100, F100, PT3916, PT385, or USER.	PT100	c*
:TEMPerature:FRTD:RZERo <NRf> [, <clist>]	Specify constant for USER type; $<\text { NRf }>=0 \text { to } 10000 .$	100	c*
:TEMPerature:FRTD:ALPHa <NRf> [, <clist>]	Specify constant for USER type; $<\mathrm{NRf}>=0 \text { to } 0.01 .$	0.00385	c*
:TEMPerature:FRTD:BETA <NRf> [, <clist>]	Specify constant for USER type; $<\mathrm{NRf}>=0 \text { to } 1.00 .$	0.111	c*
:TEMPerature:FRTD:DELTa <NRf> [, <clist>]	Specify constant for USER type; $<\mathrm{NRf}>=0 \text { to } 5.00 .$	1.507	c*
FREQ function			
[SENSe[1]]	Optional root command.		
:FREQuency:THReshold:VOLTage: RANGe <n> [, <clist>]	Select threshold voltage range; $<\mathrm{n}>=0 \text { to } 1010 \text {. }$	10	d*
:FREQuency:APERture <NRf> [, <clist>]	Set gate time for FREQ measurements in secs; $\langle\mathrm{NRf}\rangle=0.01$ to 1.0 .	1.0	e*
PERIOD function			
:PERiod:THReshold:VOLTage:RANGe < $\mathrm{n}>$ [, <clist>]	Select threshold voltage range; $<\mathrm{n}>=0 \text { to } 1010 .$	10	d*
:PERiod:APERture <NRf> [, <clist>]	Set gate time for PERIOD measurements in secs; $\langle$ NRf $\rangle=0.01$ to 1.0 .	1.0	e*

[^5]Table 3-5 (cont.)
Basic measurement commands


Channel list parameter (7702):
<clist> = (@SCH)
where: $\quad \mathrm{S}=$ Mainframe slot number (1 or 2)
$\mathrm{CH}=$ Switching module channel number (must be 2 digits)
Examples: (@101)= Slot 1, Channel 1
(@101, 203) = Slot 1, Channel 1 and Slot 2, Channel 3
$(@ 101: 110)=$ Slot 1, Channels 1 through 10
Channel list parameter (7751/7752/7753, DCV, $\Omega 2, \Omega 4$ only):
<clist> = (@Mn)
where: $\quad \mathrm{M}=$ Memory pattern command
$\mathrm{n}=$ Location number (1 to 40)

[^6]
## Reference

a. FUNCtion <name> [, <clist>]

Note that the <name> parameters in the table are enclosed in single quotes (' '). However, double quotes (" ") can instead be used. For example:
FUNC 'VOLT:AC' = FUNC "VOLT:AC"
Scan configuration - When using the <clist> command to configure a 7702 scan channel, the scan channel must first be set to the appropriate function before sending other commands to configure it. For example, to set scan channel 101 to use offset-compensated ohms, the following command sequence would be sent:

```
FUNC 'FRES', (@101) ' Set scan channel 101 to \Omega4 function.
FRES:OCOM ON, (@101) ' Enable offset-compensated ohms for
 scan channel 101.
```

If scan channel 101 was not first set for the $\Omega 4$ function, error +700 (Invalid function in scanlist) will occur when trying to enable offset-compensated ohms for that channel. Details on scanning are provided in Section 7.
b. FRESistance:OCOMpensated <b> [, <clist>]

The instrument does not have to be on the $\Omega 4$ function to enable offsetcompensated ohms. When $\Omega 4$ is selected, offset-compensated ohms will be enabled.

When using the <clist> parameter to configure a 7702 scan channel for offsetcompensated ohms, that channel must already be set for $\Omega 4$. If set for another function, a settings conflict (-221) will occur.
c. TEMPerature:FRTD:RZERo <NRf> [, <clist>]

TEMPerature:FRTD:TYPE
TEMPerature:FRTD:ALPHa <NRf> [, <clist>]
TEMPerature:FRTD:BETA <NRf> [, <clist>]
TEMPerature:FRTD:DELTa <NRf> [, <clist>]
These commands are used to set the parameters for the USER RTD type. Note that the RZERo command sets the " $\Omega$ at $0^{\circ} \mathrm{C}$ " parameter. When any of these commands are sent, the USER RTD type is automatically selected.
d. FREQuency:THReshold:VOLTage:RANGe <n> [, <clist>] PERiod:THReshold:VOLTage:RANGe <n> [, <clist>]

These commands are used to specify the expected input level. The instrument will then automatically select the most sensitive current or voltage threshold range.

## e. FREQuency:APERture <NRf> [, <clist>]

PERiod:APERture <NRf> [, <clist>]
The rate annunciators indicate the following aperture settings:
SLOW = 1 sec
MED $=0.1 \mathrm{sec}$
FAST $=0.01 \mathrm{sec}$
For all other aperture times, the rate annunciators are turned off.
f. UNIT:TEMPerature <name>

To set temperature measurement units to ${ }^{\circ} \mathrm{C}$, use the C or CEL parameter. For ${ }^{\circ} \mathrm{F}$, use the F or FAR parameter. For Kelvin, use the K parameter.
g. Trigger and retrieve readings:

NOTE Detailed information on the processes to trigger and retrieve readings is provided in Section 8, Section 13, and Appendix C.

## INITiate:CONTinuous <b> INITiate [:IMMediate]

With continuous initiation disabled (INITiate:CONTinuous OFF), you can use the INITiate command to trigger one or more measurements.

NOTE Note that sending INITiate while the instrument is performing measurements will cause error - 213 (init ignored).
[SENSe [1]] DATA[:LATest]?
[SENSe [1]]DATA:FRESh?
These commands do not trigger a reading. They simply return the last reading string. The reading reflects what is applied to the input.
While the instrument is performing measurements, you can use these commands to return the last reading. If the instrument is not performing measurements, DATA[:LATest]? will keep returning the same reading string.
DATA:FRESh? can only be used once to return the same reading string. That is, the reading must be "fresh." Sending this command again to retrieve the same reading string will generate error - 230 (data corrupt or stale) or cause the GPIB to time-out. In order to again use DATA:FRESh?, a new (fresh) reading must be triggered.

## FETCh? <br> READ?

FETCh? is similar to DATA[:LATest]? in that it can be used to return the last reading. However, it can also be used to return more than one reading. When returning more than one reading, the readings are automatically stored in the buffer.

In order to return multiple reading strings, continuous initiation must be disabled (INIT:CONT OFF) so that the sample count (SAMPle:COUNt), which specifies the number of measurements to be performed, can be set $>1$. After INITiate is sent to trigger the measurements, FETCh? will return the reading strings.
In general, READ? performs an INIT to trigger measurements and then a FETCh? to retrieve the reading strings. With continuous initiation disabled (INITiate:CONTinuous OFF), you can use the READ? command to trigger and return readings. The sample count determines the number of reading strings to be returned. With the sample count $>1$, the returned readings are automatically stored in the buffer.

NOTE When readings are stored in the buffer by the TRACe command (or by front panel data store operation), INIT and multi-sample READ? queries are locked out. A multi-sample READ? is defined as one where the sample count is $>1$. With readings in the buffer that were stored in that manner, you cannot use the INIT or READ? command if sample count is >1 (error -225, out of memory). Buffer operation is covered in Section 6.
h. TEMPerature:THERmistor <NRf> [,<clist>]

Parameter value settings:

Parameter value	Selected thermistor type
1950 to 3499	$2250 \Omega$
3500 to 7499	$5000 \Omega$
7500 to 10050	$10 \mathrm{k} \Omega$

## Basic measurement programming examples

## Example \#1 - continuous triggering

The following command sequence places the Model 2790 in a continuous trigger mode to measure ACV. Whenever DATA? is sent, the last measured reading will be sent to the computer when the Model 2790 is addressed to talk.

```
SYST:PRES ' Continuous measurement mode (INIT:CONT ON).
FUNC 'VOLT:AC' ' Select ACV function.
DATA? ' Request last measured reading.
```


## Example \#2 - one-shot triggering

The following command sequence places the Model 2790 in a one-shot trigger mode to measure offset-compensated ohms. Whenever READ? is sent, a measurement will be triggered and the measured reading will be sent to the computer when the Model 2790 is addressed to talk.

```
*RST ' One-shot measurement mode (INIT:CONT OFF).
FUNC 'FRES' ' Select \Omega4 function.
FRES:RANG le3 ' Select 1k\Omega range.
FRES:OCOM ON ' Enable offset-compensated ohms.
READ? ' Trigger and return one reading.
```


## Example \#3 - temperature measurement using Model 7702

The following command sequence places the Model 2790 in a one-shot trigger mode to perform a thermistor temperature measurement at channel 101 (Model 7702 switching module installed in slot 1). With channel 101 closed, the INIT command triggers one measurement, and the DATA? command sends the measured reading to the computer when it is addressed to talk.

```
*RST ' One-shot measurement mode (INIT:CONT OFF).
FUNC 'TEMP' ' Select TEMP function.
UNIT:TEMP F ' Select }\mp@subsup{}{}{\circ}\textrm{F}\mathrm{ TEMP units.
TEMP:TRAN THER ' Select thermistor transducer.
ROUT:CLOS (@101) ' Close channel 101.
INIT ' Trigger one measurement.
DATA? ' Return measured reading.
```


## Example \#4 - Scan configuration (Model 7702)

The following commands configure scan channels 101, 102, and 141 of a Model 7702 installed in slot 1 . When channel 101 is scanned, DCV will be selected. When channel 102 is scanned, $\Omega 2$ will be selected. When channel 141 is scanned, DCI will be selected.

```
FUNC 'VOLT',(@101) ' Configure scan channel 101 for DCV.
FUNC 'RES',(@102) ' Configure scan channel 102 for \Omega2.
FUNC 'CURR',(@141) ' Configure scan channel 141 for DCI.
```


## NOTE Detailed information on scanning is provided in Section 7.

## Measurement queries

NOTE For more information on read commands, see Section 8 (Triggering), Section 13 (SCPI Signal Oriented Measurement Commands) and Appendix C (Signal Processing Sequence \& Data Flow).

## :FETCh?

## Actions

This command will simply return the latest available reading from an instrument.

## Limitations

If the instrument does not have a reading available (indicated by dashes in the display), sending this command will cause a-230, "Data corrupt or stale" error. This query will not cause the box to trigger a reading, nor will it "wait" for a result if a reading is in progress. It is possible to get the same reading over and over using this query. It will continue to give the same result until one of two things has happened:

- A new reading has been triggered.
- The old reading has been invalidated by changing ranges or by changing function.


## Where appropriate

Since this query does not trigger a reading and can give duplicate results, there are not many cases where this command should be used. The ":DATA:FRESh?" query (see page 3-41) is often a better choice. If this query is used, the following conditions should be met:

- A reading has been triggered, either by free running (:INIT:CONT ON and :TRIG:SOUR IMM), by some event such as a bus trigger (*TRG), or by an external trigger (:TRIG:SOUR EXT).
- It is confirmed that the reading is completed, either by the setting of the RAV bit in the status model or by allowing sufficient time to pass for the reading to complete.


## :READ?

## Actions

This command performs three actions. It will reset the trigger model to the idle layer (equivalent to the :ABORt command), take the trigger model out of idle (equivalent to the :INIT command), and return a reading (equivalent to a ":FETCh?" query). This command will always return a new reading, since aborting the trigger model will invalidate any old readings and trigger a new one. This query will "wait" for a new reading to become available before the instrument sends a result back.

## Limitations

This command will not work if the trigger source is set for BUS or EXTERNAL. This will cause a -214, "Trigger deadlock" error. Under this condition, one should use a ":FETCh?" query or a ":DATA:FRESh?" query (see page 3-41). If the trigger model is continuously initiating (:INIT:CONT ON), sending this query may cause a -213 , "Init ignored" error, but will still give a new reading.

## When appropriate

If the Model 2790 receives a *RST command, then it defaults to :INIT:CONT OFF, :TRIG:SOUR IMM, and :TRIG:COUNT 1. Sending a ":READ?" query under these conditions will trigger a new reading.

## :MEASure[:<function>]?

## Actions

This query will reconfigure the instrument to the function specified in the query, set the trigger source for immediate, set the trigger count to 1 , and configure the measurement parameters to *RST defaults. It will then trigger a single reading and return the result.

## Limitations

This query is much slower than a ":READ?" or ":FETCh?" query because it has to reconfigure the instrument each time it is sent. It will reset the NPLC, autoranging, and averaging to default settings.

## When appropriate

This is an ideal command for taking one-shot measurements if the default settings for a measurement are appropriate and speed is not a requirement.

## [:SENSe[1]]:DATA:FRESh?

## Actions

This query is similar to the ":FETCh?" in that it returns the latest reading from the instrument, but has the advantage of making sure that it does not return the same reading twice.

## Limitations

Like the ":FETCh?" query, this command does not trigger a reading.

## When appropriate

This is a much better choice than the ":FETCh?" query because it can not return the same reading twice. This would be a good query to use when triggering by BUS or EXTERNAL, because it will wait for a reading to complete if a reading is in progress.

The ":CALC:DATA:FRESh?" query is similar to the ":DATA:FRESh?" query, but applies to readings which have math applied to them (e.g.:MX+B scaling).

## [:SENSe[1]]:DATA[:LATest]?

## Actions

This query will return the last reading the instrument had, regardless of what may have invalidated that reading, such as changing ranges or functions.

## Limitations

This query is fully capable of returning meaningless, old data.

## When appropriate

If, for some reason, the user wanted the last completed reading, even after changing ranges or other measurement settings, which would invalidate the old reading.

The ":CALC:DATA:LATest?" query is similar to the ":DATA:LAT?" query, but applies to readings which have math applied to them (e.g.:MX+B scaling).

## Examples

## One-shot reading, DC volts, no trigger, fastest rate

*RST
:INITiate:CONTinuous OFF;:ABORt
:SENSe:FUNCtion 'VOLTage:DC'
:SENSe:VOLTage:DC:RANGe 10 // Use fixed range for fastest readings.
:SENSe:VOLTage:DC:NPLC 0.01 // Use lowest NPLC setting for fastest
// readings .
:DISPlay:ENABle OFF // Turn off display to increase speed.
:SYSTem:AZERo:STATe OFF // Disable autozero to increase speed, but may
// cause drift over time.
:SENSe:VOLTage:DC:AVERage:STATe OFF // Turn off filter for speed.
:TRIGger: COUNt 1
: READ?
(Enter reading)
One-shot reading, DC volts, bus trigger, auto ranging
*RST
:INITiate:CONTinuous OFF;:ABORt
:TRIGger:SOURce BUS
: SENSe:FUNCtion 'VOLTage:DC'
:SENSe:VOLTage:DC:RANGe:AUTO ON
:TRIGger:COUNt 1
:INITiate
*TRG -or- GET // Triggers reading (GET is a GPIB general bus // command).
: SENSe: DATA:FRESh?
(Enter reading)

## One-shot reading, external trigger, auto delay enabled

## *RST

:INITiate:CONTinuous OFF;:ABORt
:TRIGger:SOURce EXTernal
:TRIGger:DELay:AUTO ON // Note: Auto trigger delay only takes effect with // trigger source set for BUS or EXTernal.
: SENSe:FUNCtion 'VOLTage:DC'
:SENSe:VOLTage:DC:RANGe:AUTO ON
:INITiate
(external trigger)
: SENSe: DATA:FRESh?
(enter reading) // This step will time out if the trigger has not occurred.

# Range, Digits, Rate, Bandwidth, \& Filter 

- Range - Provides details on measurement range selection. Includes the commands for remote programming.
- Digits - Provides details on selecting display resolution. Includes the commands for remote programming.
- Rate and bandwidth - Provides details on integration rate and bandwidth (for AC measurements). Includes the commands for remote programming.
- Filter - Provides details on filtering. Includes the commands for remote programming.


## Range

The range setting is "remembered" by each measurement function. When you select a function, the instrument will return to the last range setting for that function.

## Measurement ranges and maximum readings

The selected range affects both accuracy of the measurement as well as the maximum level that can be measured. The measurement ranges and maximum readings for all functions, except FREQ, PERIOD, and TEMP, are listed in Table 4-1.

Input values that exceed the maximum readings cause the message "OVERFLOW" to be displayed.

Table 4-1
Measurement ranges and maximum readings

Function	Ranges	Maximum   reading
DCV	$100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$	$\pm 1010 \mathrm{~V}$
ACV	$100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 750 \mathrm{~V}$	757.5 V
DCI	$20 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}$	$\pm 3.1 \mathrm{~A}$
ACI	$1 \mathrm{~A}, 3 \mathrm{~A}$	3.1 A
$\Omega 2$	$100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 10 \mathrm{M} \Omega, 100 \mathrm{M} \Omega$	$120 \mathrm{M} \Omega$
$\Omega 4^{*}$	$100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 10 \mathrm{M} \Omega, 100 \mathrm{M} \Omega$	$120 \mathrm{M} \Omega$

*Offset compensated ohms (OCOMP) can be performed on the $100 \Omega, 1 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ ranges.

FREQ and PERIOD - Frequency measurements from 3 Hz to 500 kHz and period measurements from $2 \mu$ s to $333 \mu$ s can be made on the ACV ranges.

TEMP - There is no range selection for temperature measurements. Temperature measurements are performed on a single, fixed range. Depending on which type of sensor is being used, the maximum temperature readings range from $-200^{\circ} \mathrm{C}$ to $630^{\circ} \mathrm{C}$.
Appendix A, "Specifications," lists the reading range for each sensor type.

## Manual ranging

To change range, press the RANGE $\Delta$ or $\nabla$ key. The instrument changes one range per key press. The selected range is displayed for one second. Note that the manual range keys have no effect on temperature (TEMP).
If the instrument displays the "OVERFLOW" message on a particular range, select a higher range until an on-range reading is displayed. Use the lowest range possible without causing an overflow to assure best accuracy and resolution.

## Auto ranging

To enable auto range, press the AUTO key. The AUTO annunciator turns on when auto ranging is selected. While auto ranging is enabled, the instrument automatically selects the best range to measure the applied signal. Auto ranging should not be used when optimum speed is required. Note that the AUTO key has no effect on temperature (TEMP).

Up-ranging occurs at $120 \%$ of range. The Model 2790 will down-range when the reading is $\leq 10 \%$ of nominal range.

To disable auto ranging, press AUTO. This will leave the instrument on the present range. You can also disable auto ranging by pressing the $\Delta$ or $\nabla$ key, however a range change may occur.

## Scanning (7702 only)

When a simple scan using the 7702 module is configured, the present function and range setting will apply to all channels in the scan. When an advanced scan is configured, each channel can have its own unique range setting. Details to configure and run a scan are provided in Section 7.

For remote programming, the <clist> parameter is used to configure channels for a scan.

## Remote programming - range

## Range commands

The commands to set range are listed in Table 4-2. Additional information on these commands follow the table.

$$
\begin{array}{ll}
\text { NOTE } & \text { Query commands and some optional command words are not included in } \\
& \text { Table 4-2. All commands for the SENSe subsystem are provided in Table 15-5. }
\end{array}
$$

Table 4-2
Range commands


1. The <clist> parameter is used to configure one or more channels for a scan. Each channel in the <clist> must be set to the function specified by the range command. If not, a conflict error (-221) will occur. For example, VOLTage:AC:RANGe 1, (@101) is only valid if scan channel 101 is set for the ACV function.
2. [:DC] is optional for the commands to set DCV and DCI range.

## Manual ranging

The range is selected by specifying the expected reading as an absolute value using the <n> parameter for the appropriate :RANGe command. The Model 2790 will then go to the most sensitive range for that expected reading. For example, if you expect a reading of approximately 3 V , let the parameter ( $<\mathrm{n}>$ ) equal 3 to select the 10 V range.

## Auto ranging

The :RANGe:AUTO command is coupled to the command to select range manually (: RANGe $<\mathrm{n}>$ ). When auto range is enabled, the parameter value for : $\mathrm{RANGe}<\mathrm{n}>$ changes to the automatically selected range value. When auto range is disabled, the instrument remains at the selected range. When a valid : $\mathrm{RANGe}<\mathrm{n}>$ command is sent, auto ranging disables.

## Range programming examples

Example \#1 - The following commands select range for DCV, $\Omega 2$, and DCI:

```
VOLT:RANG 0.5 ' Select 1V range for DCV.
RES:RANG 2e3 ' Select 10k\Omega range for \Omega2.
CURR:RANG 0.1 ' Select 100mA range for DCI.
```

Example \#2 - The following command sequence configures channel 101 of the Model 7702 to select the 10VDC range when it is scanned.

```
FUNC 'VOLT',(@101)
' Set }101\mathrm{ for DCV function.
VOLT:RANG 1.5,(@101) ' Set 101 for 10V range.
```


## Digits

The DIGITS key sets display resolution for the Model 2790 from $3 ½$ to $61 / 2$ digits. From the front panel, setting digits for one function affects all the other functions. For example if you set DCV for $31 / 2$ digits, the other functions will also set to $31 / 2$ digits. For remote programming, each mainframe input function can have its own unique digits setting.
Digits has no effect on the remote reading format. The number of displayed digits does not affect accuracy or speed. Speed is set by the RATE key.
Setting display resolution - To set display resolution, press the DIGITS key until the desired number of digits is displayed.

## Scanning (7702 only)

When a simple scan using a 7702 module is configured, the present digits setting will apply to all channels in the scan. When an advanced scan is configured, each channel can have its own unique digits setting. Details to configure and run a scan are provided in Section 7.

For remote programming, the <clist> parameter is used to configure channels for a scan.

## Remote programming — digits

## Digits commands

The commands to control display resolution (digits) are listed in Table 4-3. Additional information on these commands follow the table.

NOTE Query commands are not included in Table 4-3. All commands for the SENSe subsystem are provided in Table 15-5.

Table 4-3
Digits commands

Commands*	Description	Default
[SENSe[1]]	Optional root command.	
:VOLTage[:DC]:DIGits <n> [, <clist>]	Set \# of digits for DCV; <n> = 4 to 7 .	7
:VOLTage:AC:DIGits <n> [, <clist>]	Set \# of digits for ACV; <n> = 4 to 7.	6
:CURRent[:DC]:DIGits <n> [, <clist>]	Set \# of digits for DC1; <n> = 4 to 7.	7
:CURRent:AC:DIGits <n> [, <clist>]	Set \# of digits for ACI; <n> = 4 to 7 .	6
:RESistance:DIGits <n> [, <clist>]	Set \# of digits for $\Omega 2 ;<\mathrm{n}>=4$ to 7 .	7
:FRESistance:DIGits < $\mathrm{n}>$ [, <clist>]	Set \# of digits for $\Omega 4 ;<\mathrm{n}>=4$ to 7 .	7
:TEMPerature:DIGits <n> [, <clist>]	Set \# of digits for TEMP; <n> = 4 to 7 .	6
:FREQuency:DIGits <n> [, <clist>]	Set \# of digits for FREQ; <n> = 4 to 7 .	7
:PERiod:DIGits <n> [, <clist>]	Set \# of digits for PERIOD; <n> = 4 to 7 .	7
Channel list parameter:		
7702 <clist> = (@SCH)		
where: S = Mainframe slot number (1 or 2)		
$\mathrm{CH}=$ Switching module channel number (must be 2 digits)		
7751/7752/7753 <clist> (DCV, $\Omega 2, \Omega 4$ ) = (@Mn) (see "Memory patterns," page 2-36).		

*The <clist> parameter is used to configure one or more 7702 channels for a scan. Each channel in the <clist> must be set to the function specified by the digits command. If not, a conflict error ( -221 ) will occur. For example, VOLTage:AC:DIGits 4.5, (@101) is only valid if scan channel 101 is set for the ACV function.

## Setting digits

Even though the parameters for the DIGits command are expressed as integers (4 to 7), you can specify resolution using a real number. For example, to select $31 / 2$ digit resolution, let $\langle\mathrm{n}\rangle=3.5$. Internally the instrument rounds the entered parameter value to the nearest integer.

As implied by the commands in Table 4-3, each mainframe input function can have its own unique digits setting.

## Digits programming examples

Example \#1 - The following commands set digits for DCV and ACI:

```
VOLT:DIG 5.5 ' Set DCV to 51/2digits.
CURR:AC:DIG 4 ' Set ACI to 31/2 digits.
```

Example \#2 - The following command sequence configures channels 101 through 110 of the Model 7702 to select $41 / 2$ digits when they are scanned.

```
FUNC 'RES' (@101:110) ' Select \Omega2 function.
RES:DIG 4.5,(@101:110) ' Set scan channels to 41/2digits.
```


## Rate and bandwidth

## Rate

The RATE key sets the integration time (measurement speed) of the A/D converter; the period of time the input signal is measured (also known as aperture). The integration time affects the amount of reading noise, as well as the ultimate reading rate of the instrument.

The integration time is specified in parameters based on a number of power line cycles (NPLC), where 1 PLC for 60 Hz is $16.67 \mathrm{msec}(1 / 60)$ and 1 PLC for 50 Hz and 400 Hz is $20 \mathrm{msec}(1 / 50)$.

In general, the fastest integration time ( 0.1 PLC from the front panel, 0.01 PLC from the bus) results in increased reading noise and fewer usable digits, while the slowest integration time ( 5 PLC from the front panel, 50 PLC from the bus) provides the best commonmode and normal-mode rejection. In-between settings are a compromise between speed and noise.

The Model 2790 has a parabola-like shape for its speed vs. noise characteristics and is shown in Figure 4-1. The Model 2790 is optimized for the 1 PLC to 5 PLC reading rate. At these rates (lowest noise region in graph), the Model 2790 will make corrections for its own internal drift and still be fast enough to settle a step response $<100 \mathrm{~ms}$.

Figure 4-1
Speed vs. noise characteristics


The front panel RATE settings for all but the AC functions are explained as follow:

- FAST sets integration time to 0.1 PLC. Use FAST if speed is of primary importance (at the expense of increased reading noise and fewer usable digits).
- MEDium sets integration time to 1 PLC. Use MEDium when a compromise between noise performance and speed is acceptable.
- SLOW sets integration time to 5 PLC. SLOW provides better noise performance at the expense of speed.

For the AC functions (ACV, ACV dB, and ACI), the RATE key sets integration time and bandwidth. As listed in Table 4-4, FAST sets NPLC to 1, while the MEDium and SLOW NPLC settings are ignored (see "Bandwidth," page 4-10, for details).

Table 4-4
Rate and bandwidth settings

Function	Rate and bandwidth		
	Fast	Medium	Slow
DCV, DCI	NPLC $=0.1$	NPLC $=1$	NPLC=5
ACV, ACI	NPLC $=1, \mathrm{BW}=300$	NPLC $=\mathrm{X}, \mathrm{BW}=30$	NPLC=X, BW=3
$\Omega 2, \Omega 4$	NPLC $=0.1$	NPLC $=1$	NPLC=5
FREQ, PERIOD	APER=0.01s	APER=0.1s	APER=1s
Continuity	NPLC $=0.01$	N/A	N/A

> Notes: NPLC = number of power line cycles. BW = lower limit of bandwidth (in Hz). APER = aperture in seconds. N/A = not available. X = setting ignored.

From the front panel, setting the rate for one function affects all the other functions. For example, if you set DCV for medium speed, the other functions will also set to medium speed. For remote programming, each function can have its own unique rate setting ( 0.01 to 50 or 60 PLC ).

NOTE Rate cannot be set for continuity. It is fixed at 0.01 PLC.
Setting measurement speed - The RATE key is used to set measurement speed from the front panel. Simply press RATE until the desired speed annunciator (FAST, MED, or SLOW) turns on.

NOTE The Model 2790 uses internal references to calculate an accurate and stable reading. When the NPLC setting is changed, each reference must be updated to the new NPLC setting before a reading is generated. Therefore, frequent NPLC setting changes can result in slower measurement speed.

## Bandwidth

Bandwidth specifies the lowest frequency of interest for AC measurements. The RATE setting determines the bandwidth setting:

- SLOW -3 Hz to 300 kHz
- MEDium - 30 Hz to 300 kHz
- FAST - 300 Hz to 300 kHz

When the Slow bandwidth ( 3 Hz to 300 kHz ) is chosen, the signal goes through an analog RMS converter. The output of the RMS converter goes to a fast $(1 \mathrm{kHz})$ sampling A/D and the RMS value is calculated from 1200 digitized samples (1.2s).
When the Medium bandwidth ( 30 Hz to 300 kHz ) is chosen, the same circuit is used. However, only 120 samples ( 120 ms ) are needed for an accurate calculation because the analog RMS converter has turned most of the signal to DC.

In the Fast bandwidth ( 300 Hz to 300 kHz ), the output of the analog RMS converter (nearly pure DC at these frequencies) is simply measured at 1 PLC ( 16.6 ms ). For remote programming, the integration rate can be set from 0.01 PLC to 50 or 60 PLC.

Table 4-4 lists the front panel bandwidth settings for the AC measurement functions. For remote programming, the FAST, MED, and SLOW annunciators are only lit when conditions in the table are met. In other cases, the annunciators are turned off.

## Scanning (7702 only)

When a simple scan using the 7702 module is configured, the present rate or bandwidth setting will apply to all channels in the scan. When an advanced scan is configured, each channel can have its own rate or bandwidth setting. Details to configure and run a scan are provided in Section 7.

For remote programming, the <clist> parameter is used to configure channels for a scan.

## Remote programming - rate and bandwidth

## Rate and bandwidth commands

The commands to set the integration rate and bandwidth are listed in Table 4-5. Additional information on these commands follows the table.

NOTE Query commands are not included in Table 4-5. All commands for the SENSe subsystem are provided in Table 15-5.

Table 4-5
Rate and bandwidth commands

Commands ${ }^{1,7}$	Description	Default
Integration rate commands   [SENSe[1]]   :VOLTage[:DC]:NPLCycles <n> [, <clist>] :VOLTage[:DC]:APERture < NRf> [, <clist>]   :VOLTage:AC:NPLCycles <n> [, <clist>]   :VOLTage:AC:APERture <NRf> [, <clist>]   :CURRent[:DC]:NPLCycles <n> [, <clist>]   :CURRent[:DC]:APERture <NRf> [, <clist>]   :CURRent:AC:NPLCycles <n> [, <clist>]   :CURRent:AC:APERture <NRf> [, <clist>]   :RESistance:NPLCycles <n> [, <clist>]   :RESistance:APERture <NRf> [, <clist>]   :FRESistance:NPLCycles <n> [, <clist>]   :FRESistance:APERture <NRf> [, <clist>]   :TEMPerature:NPLCycles <n> [, <clist>]   :TEMPerature:APERture <NRf> [, <clist>]	Optional root command.   Set rate for DCV in PLCs; $\langle\mathrm{n}\rangle=0.01$ to $\mathrm{x}^{2}$.   Set rate for DCV in secs; <NRf $\rangle=x$ to $1^{3}$.   Set rate for ACV in PLCs; $\langle\mathrm{n}\rangle=0.01$ to $\mathrm{xx}^{2,5}$.   Set rate for ACV in secs; $\langle\mathrm{NRf}\rangle=\mathrm{x}$ to $1^{3,5}$.   Set rate for DCI in PLCs; $\left\langle\mathrm{n}>=0.01\right.$ to $\mathrm{x}^{2}$.   Set rate for DCI in secs; $\langle\mathrm{NRf}\rangle=\mathrm{x}$ to $1^{3}$.   Set rate for ACI in PLCs; $\langle\mathrm{n}\rangle=0.01$ to $\mathrm{x}^{2,5}$.   Set rate for ACI in secs; $\langle$ NRf $\rangle=x$ to $1^{3,5}$.   Set rate for $\Omega 2$ in PLCs; $\langle\mathrm{n}\rangle=0.01$ to $\mathrm{x}^{2}$.   Set rate for $\Omega 2$ in secs; $\langle\mathrm{NRf}\rangle=\mathrm{x}$ to $1^{3}$.   Set rate for $\Omega 4$ in PLCs; $\langle\mathrm{n}\rangle=0.01$ to $\mathrm{x}^{2}$.   Set rate for $\Omega 4$ in secs; <NRf> $=x$ to $1^{3}$.   Set rate for TEMP in PLCs; $\langle\mathrm{n}\rangle=0.01$ to $\mathrm{x}^{2}$.   Set rate for TEMP in secs; $\langle\mathrm{NRf}\rangle=\mathrm{x}$ to $1^{3}$.	5.0   (Note 4)   5.0   (Note 4)
Bandwidth commands   [SENSe[1]]   :VOLTage:AC:DETector:BANDwidth   <NRf> [, <clist>]   :CURRent:AC:DETector:BANDwidth   <NRf> [, <clist>]	Optional root command.   Set AC bandwidth for ACV in Hertz; $<\mathrm{NRf}>=3 \text { to } 3 \mathrm{e} 5^{6} .$   Set AC bandwidth for ACI in Hertz; $<\text { NRf }>=3 \text { to } 3 \mathrm{e} 5^{6} .$	30 30
Channel list parameter:```7702 <clist> = (@SCH) where: S = Mainframe slot number (1 or 2) CH = Switching module channel number (must be 2 digits)```$7751 / 7752 / 7753<c l i s t>(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)$ (see "Memory patterns," page 2-36).		

Notes:

1. The <clist> parameter is used to configure one or more 7702 channels for a scan. Each channel in the <clist> must be set to the function specified by the command. If not, a conflict error (-221) will occur. For example, RESistance:NPLCycles 1, (@ 101) is only valid if scan channel 101 is set for the $\Omega 2$ function.
2. For 60 Hz line power, $x=60$. For 50 Hz line power, $x=50$.
3. For 60 Hz line power, $x=1.67 \mathrm{e}-4$. For 50 Hz line power, $x=2 \mathrm{e}-4$.
4. For 60 Hz line power, the default is 16.67 msec . For 50 Hz line power, the default is 20 msec .
5. Commands to set rate for ACV and ACI are only valid if bandwidth is set to $300(300 \mathrm{~Hz}$ to 300 kHz$)$. See "Rate and bandwidth conflict error," page 4-12, for details.
6. The instrument will actually accept a parameter value up to 10 e 6 , but it will default to 3 e 5 .
7. [:DC] is optional for the commands to set DCV and DCI integration rate.

## Aperture

Aperture is a different way to specify the integration rate. As previously explained, 1 PLC sets the integration rate to 16.67 msec (assuming 60 Hz line power). You can instead use an APERture command as follows to set the same integration rate:
:APERture $16.67 \mathrm{e}-3$

## Bandwidth

There are three bandwidth settings for ACV and ACI measurements; $3(3 \mathrm{~Hz}$ to 300 kHz$)$, $30(30 \mathrm{~Hz}$ to 300 kHz$)$, and $300(300 \mathrm{~Hz}$ to 300 kHz$)$. To achieve the best accuracy for ACV and ACI measurements, use the bandwidth setting that best reflects the frequency of the input signal. For example, if the input signal is 40 Hz , then a bandwidth setting of 30 should be used.

To set bandwidth, simply specify (approximately) the frequency of the input signal. The instrument will automatically set the bandwidth as follows:

```
<NRf> = 3 to 29 3Hz to 300kHz
 = 30 to 299 30Hz to 300kHz
 = 300 to 300e3 300Hz to 300kHz
```

NOTE A rate command (:NPLCycles or :APERture) for ACV and ACI is only valid if the bandwidth for that AC function is set to 300 (300Hz to 300 kHz ). See "Rate and bandwidth conflict error" below for details.

## Rate and bandwidth conflict error

For bandwidth settings of 3 and 30, the normal A/D conversion method is not used for ACV and ACI measurements. Therefore, integration rate commands (:NPLCycles and :APERture) for these bandwidth settings will cause a settings conflict error (-221) and not be executed.

For a bandwidth setting of 300 , the normal $\mathrm{A} / \mathrm{D}$ conversion method is used, therefore the integration rate commands can be used.

The default bandwidth setting is 30 for both ACV and ACI. If you want to set an integration rate for an AC function, you will have to first set the bandwidth to 300 . Failure to do so results in an error -221 , Settings Conflict.

## Rate and bandwidth programming examples

Example \#1 - The following command sequence sets ACV rate to 5 PLC. In order to set rate for an AC function, bandwidth must first be set to 300:

```
VOLT:AC:DET:BAND 300
' Set ACV bandwidth to 300.
VOLT:AC:NPLC 5 ' Set ACV rate to 5 PLC.
```

NOTE VOLT:AC:DET:BAND must be set to 300 before the VOLT:AC:NPLC command can be sent.

Example \#2 - The following command sequence configures channels 101 and 103 of the Model 7702 to set integration rate to 6 PLC when they are scanned.

```
FUNC 'VOLT' (@101, 103) ' Select DCV function.
VOLT:NPLC 6,(@101, 103) ' Set rate to 6 PLC.
```


## Filter

The digital filter is used to stabilize noisy measurements. The displayed, stored, or transmitted reading is a windowed-average of a number of reading conversions (from 1 to 100).

The filter setup is "remembered" and can be unique for each measurement function (DCV, $\mathrm{ACV}, \mathrm{DCI}, \mathrm{ACI}, \Omega 2, \Omega 4$, and TEMP). When you select a function, the instrument will return to the last filter setup for that function.

NOTE The various instrument operations, including Filter, are performed on the input signal in a sequential manner. See "Signal processing sequence," page C-2, for details. It includes flowcharts showing where in the processing sequence that filtering is performed.

## Filter characteristics

In general, the digital filter places a specified number of $\mathrm{A} / \mathrm{D}$ conversions (Filter Count) into a memory stack. These A/D conversions must occur consecutively within a selected reading window (Filter Window). The readings in the stack are then averaged to yield a single filtered reading. The stack can be filled in two ways (Filter Type): moving or repeating. The moving filter keeps adding and removing a single A/D conversion from the stack before taking the average, while the repeating filter only averages a stack that is filled with new A/D conversions.

Details on digital filter characteristics are provided as follows:
Filter count - The filter count specifies how many consecutive A/D conversions (within the filter window) to place in the memory stack. When the stack is full, the $A / D$ conversions are averaged to calculate the final filtered reading. The filter count can be set from 1 to 100 . Note that with a filter count of 1 , no averaging is done. However, only readings within the filter window will be displayed, stored, or transmitted.

> NOTE While the filter processes readings, the FILT annunciator blinks. Readings that are being displayed while the FILT annunciator blinks are not final filtered readings. When the FILT annunciator stops blinking, the filter has settled.

Filter window - The digital filter uses a window to control filter threshold. As long as the input signal remains within the selected window, A/D conversions continue to be placed in the stack. If the signal changes to a value outside the window, the filter resets and starts processing again starting with a new initial conversion value from the A/D converter.

The five window selections from the front panel are $0.01 \%, 0.1 \%, 1 \%, 10 \%$ of range, and NONE (no window). For remote programming, the window can be set to any value from $0.01 \%$ to $10 \%$ or NONE.

For voltage, current, and resistance, the filter window is expressed as a percent of range. For example, on the 10 V range, a $10 \%$ window means that the filter window is $\pm 1 \mathrm{~V}$. For temperature, the filter window is expressed as a percent of the maximum temperature reading. The maximum temperature depends on which transducer is being used. For example, for a thermistor, the maximum reading is $150^{\circ} \mathrm{C}$; a $10 \%$ window means that the filter window is $\pm 15^{\circ} \mathrm{C}$.

Filter type - There are two digital filter types: moving and repeating. The moving average filter uses a first-in, first-out stack. When the stack becomes full, the measurement conversions are averaged, yielding a reading. For each subsequent conversion placed in the stack, the oldest conversion is discarded and the stack is re-averaged, yielding a new reading. This process is depicted in Figure 4-2A.

For the repeating filter, the stack is filled and the conversions are averaged to yield a reading. The stack is then cleared and the process starts over (Figure 4-2B). The repeating filter is used for scanning, so readings from other channels are not averaged with the present channel.

NOTE The moving filter cannot be used when scanning. If a 7702 scan channel is set up to use the moving filter, the filter will not turn on. Scanning is covered in Section 7.

Figure 4-2

## Moving and repeating filters

## A. Type - Moving Average, Readings $=10$


B. Type - Repeating, Readings $=10$


## Filter example

Filter Type = Moving
Filter Window $=0.01 \%$ of range
Filter Count $=10$
Filter State $=$ On
Ten readings fill the stack to yield a filtered reading. Now assume the next reading (which is the $11^{\text {th }}$ ) is outside the window. A reading will be processed (displayed); however, the stack will be loaded with that same reading. Each subsequent valid reading will then displace one of the loaded readings in the stack. The FILT annunciator will flash until 10 new readings fill the stack.

NOTE Bit 8 of the Operation Event Status Register sets when the filter window has properly settled (or the filter is disabled). See Section 11, "Status Structure," for details.

## Filter control and configuration

The FILTER key toggles the state of the Filter. When the Filter is enabled, the FILT annunciator is on. The FILT annunciator will flash when the filter is not settled. When disabled, the FILT annunciator is off. The filter can be configured while it is enabled or disabled.

The filter is configured from the filter configuration menu (Figure 4-3). Perform the following steps to configure the filter:

1. Select the desired function.
2. Press SHIFT and then TYPE. The present WINDOW setting will be displayed.
3. Use the RANGE $\Delta$ or $\nabla$ key to display the desired window setting $(0.01 \%, 0.1 \%$, $1 \%, 10 \%$, or NONE) and press ENTER.
4. Use the $\downarrow, \Delta, \Delta$, and $\nabla$ keys to display the number of readings to filter (1 to 100) and press ENTER.
5. Use the $\Delta$ or $\nabla$ key to display the desired filter type (moving or repeating) and press ENTER. The filter turns on and the instrument returns to the normal measurement state.

NOTE While the filter is enabled (FILT annunciator on), changes to the configuration take effect as soon as they are made. With filter disabled (FILT annunciator off), changes to the configuration take place when the filter is enabled.

While the filtering operation is in progress, the FILT annunciator blinks. Readings will continue to be processed (i.e., displayed, stored, sent over the bus), but they could be questionable. When the FILT annunciator stops blinking, the filter has settled.

Changing function or range causes the filter to reset. The filter then assumes the state (enabled or disabled) and configuration for that function or range.

Figure 4-3
Filter configuration flow chart


## Scanning

The moving filter cannot be used when scanning. A scan channel cannot be configured to use the moving filter. Also, the filter window is not used when scanning.

When a simple scan is configured, the present filter count and state will apply to all channels in the scan. The window setting is ignored (effectively set to NONE) and, if the moving filter is selected, the filter will not enable when the scan is run.

For the advanced scan, filter state (on or off) and count can be set for each channel. You cannot set unique filter count, type, and window settings from the advanced scan setup menu.

For remote programming, the <clist> parameter is used to set filter count and state for each 7702 channel in the scan. You cannot set unique filter type and window settings.

NOTE Details on configuring a 7702 scan using filtering in a scan are provided in Section 7.

## Remote programming - filter

## Filter commands

The filter commands are listed in Table 4-6. Additional information on these commands follow the table.

NOTE Query commands are not included in Table 4-6. All commands for the SENSe subsystem are provided in Table 15-5.

Table 4-6

## Filter commands

Commands ${ }^{1,4}$	Description ${ }^{5}$	Default
DCV filter commands		
[SENSe[1]]	Optional root command.	
:VOLTage[:DC]:AVERage:TCONtrol <name>	Select filter type; <name> = MOVing or REPeat.	(Note 2)
:VOLTage[:DC]:AVERage:WINDow <NRf>	Set filter window in \%; <NRf $>=0$ to 10 .	0.1
:VOLTage[:DC]:AVERage:COUNt <n> [, clist]	Specify filter count; $\langle\mathrm{n}\rangle=1$ to 100 .	
:VOLTage[:DC]:AVERage:STATe <b> [, clist]	Enable or disable the filter.	(Note 3)
ACV filter commands		
[SENSe[1]]	Optional root command.	
:VOLTage:AC:AVERage:TCONtrol <name>	Select filter type; <name> = MOVing or REPeat.	(Note 2)
:VOLTage:AC:AVERage:WINDow <NRf>	Set filter window in \%; <NRf> $=0$ to 10 .	0.1
:VOLTage:AC:AVERage:COUNt <n> [, clist]	Specify filter count; <n> = 1 to 100 .	
:VOLTage:AC:AVERage:STATe <b> [, clist]	Enable or disable the filter.	(Note 3)
DCI filter commands		
[SENSe[1]]	Optional root command.	
:CURRent[:DC]:AVERage:TCONtrol <name>	Select filter type; <name> = MOVing or REPeat.	(Note 2)
:CURRent[:DC]:AVERage:WINDow <NRf>	Set filter window in \%; <NRf $>=0$ to 10.	0.1
:CURRent[:DC]:AVERage:COUNt <n>   [, clist]	Specify filter count; <n> = 1 to 100 .	10
:CURRent[:DC]:AVERage:STATe <b> [, clist]	Enable or disable the filter.	(Note 3)
ACI filter commands		
[SENSe[1]]	Optional root command.	
:CURRent:AC:AVERage:TCONtrol <name>	Select filter type; <name> = MOVing or REPeat.	(Note 2)
:CURRent:AC:AVERage:WINDow <NRf>	Set filter window in \%; <NRf> $=0$ to 10 .	0.1
:CURRent:AC:AVERage:COUNt <n> [, clist]	Specify filter count; <n> = 1 to 100 .	
:CURRent:AC:AVERage:STATe <b> [, clist]	Enable or disable the filter.	(Note 3)

## Table 4-6 (cont.)

Filter commands

Commands ${ }^{1,4}$	Description ${ }^{5}$	Default
	Optional root command.   Select filter type; <name> = MOVing or REPeat.   Set filter window in \%; <NRf $>=0$ to 10 .   Specify filter count; $\langle\mathrm{n}>=1$ to 100 .   Enable or disable the filter.   Optional root command.   Select filter type; <name> = MOVing or REPeat.   Set filter window in \%; <NRf> $=0$ to 10 . Specify filter count; $\langle\mathrm{n}\rangle=1$ to 100 .   Enable or disable the filter.   Optional root command.   Select filter type; <name> = MOVing or REPeat.   Set filter window in \%; <NRf $\rangle=0$ to 10 . Specify filter count; $\langle\mathrm{n}>=1$ to 100 . Enable or disable the filter.   (must be 2 digits)   ) (see "Memory patterns," page 2-36).	(Note 2) 0.1 10 (Note 3) (Note 2) 0.1 10 (Note 3) (Note 2) 0.1 10 (Note 3)

Notes:

1. The <clist> parameter is used to configure one or more 7702 channels for a scan. Each channel in the <clist> must be set to the function specified by the filter command. If not, a conflict error ( -221 ) will occur. For example, VOLTage:AVERage:STATe ON, (@101) is only valid if scan channel 101 is set for the DCV function.
2. REPeat is the *RST default and MOVing is the SYSTem:PRESet default. From the front panel, the factory default is MOVing.
3. OFF is the *RST default and ON is the SYSTem:PRESet default.
4. [:DC] is optional for the commands to set DCV and DCI filter.
5. Filter window - Parameter value 0 for the WINDow commands sets the filter window to NONE.

## Filter programming examples

Example \#1 - The following command sequence configures filtering for the DCI function:

```
CURR:TCON MOV ' Select the moving filter.
CURR:AVER:WIND 0.01 ' Set filter window to 0.01%.
CURR:AVER:COUN 10 ' Set to filter 10 readings.
CURR:AVER ON ' Enable filter.
```

Example \#2 - The following command sequence configures channels 101 through 115 of the Model 7702 to use the repeat filter when they are scanned.

```
FUNC 'VOLT' ' Select DCV function.
VOLT:AVER:TCON REP ' Select the repeating filter.
VOLT:AVER:COUN 20,(@101:115) ' Set to filter 20 readings.
VOLT:AVER ON,(@101:115) ' Enable filter.
```


## 5

## Relative, Math, Ratio,

## Channel Average, and dB

- Relative - Explains how to null an offset or establish a baseline value. Includes the commands for remote programming.
- Math - Covers the three basic math operations: $m X+b, m / X+b$, and percent. Includes the commands for remote programming. Also, summarizes the low ohms and high ohms calculations for the 7751, 7752, and 7753 modules. Details on these math operations are provided in Section 2 of the Model 2790 User's Manual.
- Ratio and channel average (7702 only) - Explains how to use these calculations to display the ratio or average of two switching channels.
- $\mathbf{d B}$ - Explains how to use remote programming to configure the instrument to perform DCV dB and ACV dB measurements.

WARNING When using these functions, the display may indicate a non-hazardous voltage, but hazardous voltage may be present on the input connectors.

## Relative

The rel (relative) function can be used to null offsets or subtract a baseline reading from present and future readings. When rel is enabled, the instrument uses the present reading as a relative value. Subsequent readings will be the difference between the actual input value and the rel value.
You can define a rel value for each function. Once a rel value is established for a measurement function, the value is the same for all ranges. For example, if 50 V is set as a rel value on the 100 V range, the rel is also 50 V on the $1000 \mathrm{~V}, 10 \mathrm{~V}, 1 \mathrm{~V}$, and 100 mV ranges.
Therefore, when you perform a zero correction by enabling REL, the displayed offset becomes the reference value. Subtracting the offset from the actual input zeroes the display, as follows:
Actual Input - Reference = Displayed Reading
A rel value can be as large as the highest range.
Selecting a range that cannot accommodate the rel value does not cause an overflow condition, but it also does not increase the maximum allowable input for that range. For example, on the 10 V range, the Model 2790 still overflows for a 12 V input.

NOTE The various instrument operations, including Relative, are performed on the input signal in a sequential manner. See Appendix C, for details. It includes flowcharts showing where in the processing sequence that the Rel operation is performed.

## Basic operation

NOTE If using switching module inputs, make sure the front panel INPUTS switch is set to the REAR position (in). If using the front panel inputs, the switch must be in the FRONT position (out).

1. Select the desired measurement function and an appropriate range setting.
2. Apply the signal to be relayed to a switching channel input or to the front panel inputs.
3. If using a switching module, close the appropriate channel(s) to connect the input to the DMM. If using the front panel inputs (FRONT inputs selected), it does not matter if a switching channel is closed.
4. Press the REL key to set the rel value. The display will zero and the REL annunciator will turn on.
5. Apply the signal to be measured.

Pressing REL a second time disables rel.
You can input a rel value manually using the $m \mathrm{X}+\mathrm{b}$ or $\mathrm{m} / \mathrm{X}+\mathrm{b}$ function. Set M for 1 and B for any value you want. The $\mathrm{mX}+\mathrm{b}$ function is covered in this section (see "Math," page 5-7).

## Front panel scanning (7702 only)

When a simple scan using the 7702 module is configured, the present rel setting will apply to all channels in the scan. When an advanced scan is configured, each channel can have its own unique rel setting. Details to configure and run a scan are provided in Section 7.

For an advanced scan, the following general procedure shows how to configure a scan channel to use rel:

1. While in the normal measurement state, select the appropriate function and close the appropriate channel. For example, if scan channel 101 is going to be configured for DCV and use rel, select DCV and close channel 101.
2. Apply the DCV signal to be rel'ed to the closed channel. This could be an offset or a baseline level.
3. Press the REL key to enable rel (REL annunciator on). The input signal level is used as the rel value.
4. When configuring the advanced scan (as explained in Section 7), select the desired channel, press DCV, and then press REL (REL annunciator on).

When the channel is scanned, rel will enable using the rel value established in step 3.

## Remote scanning

For remote programming, the <clist> parameter is used to configure channels for a 7702 scan (Section 7). The <clist> parameter can also include memory pattern locations to allow scanning through 7751/7752/7753 channels (see "Memory patterns," page 2-36).

## Remote programming - rel

## Rel commands

The rel commands to set range are listed in Table 5-1. Additional information on these commands follow the table.

NOTE Query commands are not included in Table 5-1. All commands for the SENSe subsystem are provided in Table 15-5.

Table 5-1
Rel commands

\begin{tabular}{|c|c|c|}
\hline Commands \({ }^{1}\) \& Description \& Default \\
\hline Rel commands for DCV
[SENSe[1]]
:VOLTage[:DC]:REFerence <n> [, <clist>]
:VOLTage[:DC]:REFerence:STATe <b>
[, <clist>]
:VOLTage[:DC]:REFerence:ACQuire [, <clist>]
Rel commands for ACV
[SENSe[1]]
:VOLTage:AC:REFerence <n> [, <clist>]
:VOLTage:AC:REFerence:STATe <b> [, <clist>]
:VOLTage:AC:REFerence:ACQuire [, <clist>]
\(\quad\) Rel commands for DCI
[SENSe[1]]
:CURRent[:DC]:REFerence <n> [, <clist>]
:CURRent[:DC]:REFerence:STATe <b>
[, <clist>]
:CURRent[:DC]:REFerence:ACQuire [, <clist>]
Rel commands for ACI
[SENSe[1]]
:CURRent:AC:REFerence <n> [, <clist>]
:CURRent:AC:REFerence:STATe <b>
[, <clist>]
:CURRent:AC:REFerence:ACQuire [, <clist>] \& \begin{tabular}{l}
Optional root command. \\
Specify rel value; <n>=-1010 to 1010 \\
(V). \\
Enable/disable rel; <b> = ON or OFF. \\
Use input signal as rel value. \\
Optional root command. \\
Specify rel value; \(\langle\mathrm{n}\rangle=-757.5\) to 757.5 (V). \\
Enable/disable rel; <b> = ON or OFF. Use input signal as rel value. \\
Optional root command. \\
Specify rel value; \(\langle\mathrm{n}\rangle=-3.1\) to 3.1 (A). \\
Enable/disable rel; <b>=ON or OFF. \\
Use input signal as rel value. \\
Optional root command. \\
Specify rel value; \(\langle\mathrm{n}\rangle=-3.1\) to 3.1 (A). Enable/disable rel; <b> = ON or OFF. \\
Use input signal as rel value.
\end{tabular} \& 0
OFF

0
OFF

0
OFF

O
OFF <br>
\hline
\end{tabular}

## Table 5-1 (cont.)

Rel commands

Commands ${ }^{1}$	Description	Default
Rel commands for $\Omega 2$   [SENSe[1]]   :RESistance:REFerence <n> [, <clist>]   :RESistance:REFerence:STATe <b> [, <clist>] :RESistance:REFerence:ACQuire [, <clist>]   Rel commands for $\Omega 4$	Optional root command.   Specify rel value; $\langle\mathrm{n}\rangle=0$ to $120 \mathrm{e} 6(\Omega)$.   Enable/disable rel; <b>=ON or OFF. Use input signal as rel value.	$\left\lvert\, \begin{aligned} & 0 \\ & \mathrm{OFF} \end{aligned}\right.$
[SENSe[1]]   :FRESistance:REFerence <n> [, <clist>] :FRESistance:REFerence:STATe <b> [, <clist>] :FRESistance:REFerence:ACQuire [, <clist>] Rel commands for TEMP 2	Optional root command.   Specify rel value; $\langle\mathrm{n}\rangle=0$ to $120 \mathrm{e} 6(\Omega)$. Enable/disable rel; <b>=ON or OFF. Use input signal as rel value.	$\left\lvert\, \begin{aligned} & 0 \\ & \mathrm{OFF} \end{aligned}\right.$
[SENSe[1]]   :TEMPerature:REFerence <n> [, <clist>] :TEMPerature:REFerence:STATe <b> [, <clist>] :TEMPerature:REFerence:ACQuire [, <clist>]   Rel commands for $F R E Q$	Optional root command.   Specify rel value; <n>=-200 to $1820\left({ }^{\circ} \mathrm{C}\right)$. Enable/disable rel; <b> = ON or OFF. Use input signal as rel value.	$\left\lvert\, \begin{aligned} & 0 \\ & \mathrm{OFF} \end{aligned}\right.$
[SENSe[1]]   :FREQuency:REFerence <n> [, <clist>] :FREQuency:REFerence:STATe <b> [, <clist>] :FREQuency:REFerence:ACQuire [, <clist>]   Rel commands for PERIOD	Optional root command.   Specify rel value; $\langle\mathrm{n}\rangle=0$ to $1.5 \mathrm{e} 7(\mathrm{~Hz})$. Enable/disable rel; <b> = ON or OFF. Use input signal as rel value.	$\left\lvert\, \begin{aligned} & 0 \\ & \text { OFF } \end{aligned}\right.$
[SENSe[1]]   :PERiod:REFerence <n> [, <clist>]   :PERiod:REFerence:STATe <b> [, <clist>]   :PERiod:REFerence:ACQuire [, <clist>]	Optional root command.   Specify rel value; $\langle\mathrm{n}\rangle=0$ to 1 (sec).   Enable/disable rel; <b>=ON or OFF.   Use input signal as rel value.	$\begin{array}{\|l} 0 \\ \text { OFF } \end{array}$
Channel list parameter: $\begin{aligned} & 7702 \text { <clist> }=(@ \text { SCH }) \\ & \text { where: } \quad \begin{array}{l} \text { S }=\text { Mainframe slot number }(1 \text { or } 2) \\ \text { CH }=\text { Switching module channel number } \end{array} \\ & 7751 / 7752 / 7753 \text { <clist> }(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ \mathrm{Mn} \end{aligned}$	ust be 2 digits)   (see "Memory patterns," page 2-36).	

1. The <clist> parameter is used to configure one or more channels for a scan. Each channel in the <clist> must be set to the function specified by the rel (reference) command. If not, a conflict error ( -221 ) will occur. For example, VOLTage:AC:REFerence 1, (@101) is only valid if scan channel 101 is set for the ACV function.
2. [:DC] is optional for the commands to set DCV and DCI rel.

## "Pressing REL" using rel commands

When the front panel REL key is pressed, the displayed reading is used as the rel value. Subsequent readings are then the result of the actual input value and the rel value.

The :REFerence:ACQuire and :REFerence:STATe ON commands (in that order) can be used to "press" the REL key. For example, the following command sequence is the equivalent of pressing the REL key while on the DCV function:

```
VOLT:REF:ACQ ' Acquire reading as rel value.
VOLT:REF:STAT ON ' Enable rel.
```


## Setting rel values

The :REFerence $<\mathrm{n}>$ command specifies the rel value for the specified function, while the :ACQuire command uses the input signal as the rel value. The :ACQuire command is typically used to zero the display. For example, if the instrument is displaying a $1 \mu \mathrm{~V}$ offset, sending :ACQuire and enabling rel (STATe ON) zeroes the display.

The ACQuire command is only functional if the instrument is on the specified function. For example, if the instrument is on the DCV function, the only valid acquire command is VOLT:DC:REF:ACQ. Also, if the instrument is overflowed ("OVERFLOW") or a reading has not been triggered ("------"), an execution error (-200) occurs when :ACQuire is sent.

The :REFerence $<\mathrm{n}>$ command is coupled to the ACQuire command. When a rel value is set using :REFerence $<\mathrm{n}>$, the :REFerence? query command returns the programmed value. When rel is set using :ACQuire, the :REFerence? query command returns the acquired rel value.

## Rel programming examples

Example \#1 - The following command sequence zeroes the display for DCV.

```
FUNC 'VOLT' ' Select DCV.
VOLT:REF:ACQ ' Use input level as rel value for DCV.
VOLT:REF:STAT ON ' Enable rel.
```

Example \#2 - The following command sequence configures channel 101 of the Model 7702 to enable rel and use a 1 V rel value when it is scanned.

```
FUNC 'VOLT',(@101) ' Select DCV for channel 101.
VOLT:REF 1,(@101) ' Set 1V rel value.
VOLT:REF:STAT ON,(@101) ' Enable rel.
```

Example \#3 - The following command sequence configures channel 101 of the Model 7702 to zero correct the DCV input when it is scanned.

```
FUNC 'VOLT',(@101) ' Select DCV for channel 101.
ROUT:CLOS (@101) ' Close channel 101.
VOLT:REF:ACQ (@101) ' Use input to channel 101 as rel value.
VOLT:REF:STAT ON,(@101) ' Enable rel.
```


## Math

The Model 2790 has built-in math calculations that are accessed from the MATH menu. The basic math functions include $m \mathrm{X}+\mathrm{b}$, percent, and $\mathrm{m} / \mathrm{X}+\mathrm{b}$. With a 7751,7752 , or 7753 installed, the following calculations are available:

S1Iohms With a 7751, 7752, or 7753 installed in slot 1, the low ohms calculation is available.
S1 Vohms With a 7751 or 7753 installed in slot 1, the high ohms calculation is available.
S2Iohms With a 7751, 7752, or 7753 installed in slot 2, the low ohms calculation is available.
S2Vohms With a 7751 or 7753 installed in slot 2, the high ohms calculation is available.
Figure 5-1 shows the MATH menu tree. Note that the settings shown in the menu tree are the factory defaults.

NOTE The various instrument operations, including Math, are performed on the input signal in a sequential manner. See Appendix C for details. It includes flowcharts showing where in the processing sequence that the Math operation is performed.

Figure 5-1
MATH menu tree


NOTE A Math operation can be used with the ratio and channel average calculation. The ratio or channel average reading will be used in the calculation for the selected math function.

## mX+b

This math operation lets you manipulate normal display readings (X) mathematically according to the following calculation.
$\mathrm{Y}=\mathrm{mX}+\mathrm{b}$
where: X is the normal display reading.
m and b are the user-entered constants for scale factor and offset. Y is the displayed result.

NOTES The $m$ and $b$ constants for $m X+b$ are coupled to the $m$ and $b$ constants for $m / X+b$. If you change any of the constants for $m X+b$, they will also change for $m / X+b$.

When using Rel, the rel'ed reading of the input signal is used by the $m X+b$ calculation.

## mX+b configuration

1. Press SHIFT and then MATH to display the math menu.
2. Press the RANGE $\Delta$ or $\nabla$ key to display " $m \mathrm{X}+\mathrm{B}$ " and press ENTER to display the present scale factor:
$\mathrm{M}:+1.000000 \wedge \quad$ (factory default)
3. Key in the scale factor value. The $\longleftarrow$ and $\downarrow$ keys control cursor position and the $\Delta$ and $\nabla$ keys increment/decrement the digit value. To change range, place the cursor on the multiplier and use the $\Delta$ and $\nabla$ keys ( $\mathrm{m}=\times 0.001, \wedge=\times 1, \mathrm{~K}=$ $\times 1000$, and $M=\times 1,000,000$ ). With the cursor on the polarity sign, the $\Delta$ and $\nabla$ keys toggle polarity.
4. Press ENTER to enter the $m$ value and display the offset (b) value:
$\mathrm{b}:+00.00000 \mathrm{~m} \quad$ (factory default)
5. Key in the offset value.
6. Press ENTER to enter the b value and display the one-character units designator: UNITS: X (factory default)
7. Use the cursor keys and the $\Delta$ or $\nabla$ key if you wish to change the units designator. The character can be any letter in the alphabet (A through Z), the degree symbol $\left({ }^{\circ}\right)$, or the ohms symbol $(\Omega)$.
8. Press ENTER. The MATH annunciator will turn on and the result of the calculation will be displayed. Note that the calculation will be applied to all measurement functions.
9. To disable mX+b, again press SHIFT and then MATH. The MATH annunciator will turn off.

## mX+b rel

The $\mathrm{mX}+\mathrm{b}$ function can be used to manually establish a rel value. To do this, set the scale factor ( m ) to 1 and set the offset (b) to the rel value. Each subsequent reading will be the difference between the actual input and the rel value (offset).

## m/X + b (reciprocal)

This math operation lets you manipulate normal display readings ( X ) mathematically according to the following calculation.
$\mathrm{R}=\mathrm{m} / \mathrm{X}+\mathrm{b}$
where: X is the normal display reading.
m and b are the user-entered constants for scale factor and offset.
R is the displayed result.
Typically, this math operation is used with $\mathrm{m}=1$ and $\mathrm{b}=0$ (which are the default constants). With these values, R is simply the reciprocal of the normal display reading:
$R=1 / X$
Example - Assume the normal displayed reading is $2.5 \Omega$. The reciprocal of resistance is conductance. When $m / X+b$ is enabled (assuming $m=1$ and $b=0$ ), the following conductance reading will be displayed:
0.4 R

NOTES The $m$ and $b$ constants for $m / X+b$ are coupled to the $m$ and $b$ constants for $m X+b$. If you change any of the constants for $m / X+b$, they will also change for $m X+b$.

When using Rel, the rel'ed reading of the input signal is used by the $m / X+b$ calculation.

The Model 2790 goes into an over-range condition whenever the input signal exceeds $120 \%$ of the selected measurement range. Typically, the Model 2790 displays the "OVRFLW" message when this over-range condition occurs. An exception is the $m / X+b$ calculation. If the input signal for $m / X+b$ exceeds $120 \%$ of the selected range, the "UDRFLW" message will instead be displayed.

As with the "OVRFLW" message, the decimal point is displayed along with the "UDRFLW" message to indicate the selected range. For example, the message "U.DRFLW V" indicates that the Model 2790 is on the 1V range and the input signal is $>1.2 \mathrm{~V}$ for the $\mathrm{m} / \mathrm{X}+\mathrm{b}$ calculation to cause the over-range condition.

Keep in mind that the SxVohms calculation is actually a shortcut for the $m / X+b$ math function. Therefore, if the input voltage exceeds the selected range, the "UDRFLW" message will be displayed.

For remote programming, the value $+9.9 \mathrm{e}+37$ is returned for an "OVRFLW" reading. The value $-9.9 \mathrm{e}+37$ is returned for an "UDRFLW" reading.

## $m / X+b$ configuration

1. Press SHIFT and then MATH to display the math menu.
2. Press the RANGE $\Delta$ or $\nabla$ key to display " $m \mathrm{X}+\mathrm{B}$ " and press ENTER to display the present scale factor:
$\mathrm{M}:+1.000000 \wedge \quad$ (factory default)
3. Key in the scale factor value. The $\downarrow$ and $\downarrow$ keys control cursor position and the $\Delta$ and $\nabla$ keys increment/decrement the digit value. To change range, place the cursor on the multiplier and use the $\Delta$ and $\nabla$ keys ( $m=\times 0.001, \wedge=\times 1$, $\mathrm{K}=\times 1000$, and $\mathrm{M}=\times 1,000,000)$. With the cursor on the polarity sign, the $\Delta$ and $\nabla$ keys toggle polarity.
4. Press ENTER to enter the $m$ value and display the offset (b) value:
$\mathrm{b}:+00.00000 \mathrm{~m} \quad$ (factory default)
5. Key in the offset value.
6. Press ENTER to enter the b value and display the one-character units designator: UNITS: X (factory default)
7. Use the cursor keys and the $\Delta$ or $\nabla$ key if you wish to change the units designator. The character can be any letter in the alphabet (A through Z), the degree symbol $\left(^{\circ}\right.$ ), or the ohms symbol ( $\Omega$ ).
8. Press ENTER. The MATH annunciator will turn on and the result of the calculation will be displayed. Note that the calculation will be applied to all measurement functions.
9. To disable $m / X+b$, again press SHIFT and then MATH. The MATH annunciator will turn off.

NOTE The result of the $m / X+b$ calculation may be displayed in exponential notation. For example, a displayed reading of $+2.500 E+03 R$ is equivalent to $2500 R$ (2.5KR).

## Percent

This math function determines percent deviation from a specified reference value. The percent calculation is performed as follows:

Percent $=\frac{\text { Input }- \text { Reference }}{\text { Reference }} \times 100 \%$
where: Input is the normal display reading. Reference is the user entered constant. Percent is the displayed result.

NOTE When using Rel, the rel'ed reading of the input signal is used by the percent calculation.

## Percent configuration

1. Press SHIFT and then MATH to display the math menu.
2. Press the RANGE $\Delta$ or $\nabla$ key to display "PERCENT" and press ENTER to display the present reference value:
REF $+1.000000 \wedge$ (factory default)
3. Key in the reference value. The $\boldsymbol{\downarrow}$ and keys control cursor position and the $\Delta$ and $\nabla$ keys increment/decrement the digit value. To change range, place the cursor on the multiplier and use the $\Delta$ and $\nabla$ keys ( $\mathrm{m}=\times 0.001, \wedge=\times 1, \mathrm{~K}=\times 1000$, and $\mathrm{M}=\times 1,000,000)$. With the cursor on the polarity sign, the $\Delta$ and $\nabla$ keys toggle polarity.
4. Press ENTER. The MATH annunciator will turn on and the result of the calculation will be displayed. Note that the calculation will be applied to all measurement functions.
5. To disable mX+b, again press SHIFT and then MATH. The MATH annunciator will turn off.

NOTE The result of the percent calculation is positive when the input exceeds the reference and negative when the input is less than the reference.

The result of the percent calculation may be displayed in exponential notation.
For example, a displayed reading of $+2.500 E+03 \%$ is equivalent to $2500 \%$ (2.5K\%).

## Sxlohms

Calculates and displays low resistance reading for 7751/7752/7753 module in slot x (where $\mathrm{x}=1$ or 2 ). This math function is a shortcut for the $\mathrm{mX}+\mathrm{b}$ calculation. When selected, the following " $m$ " and " $b$ " factors are used:
$\mathrm{m}=1 / \mathrm{I}_{\text {SOUR }}$
$\mathrm{b}=0$
Calculation:

$$
\begin{aligned}
\mathrm{R} & =\mathrm{mX}+\mathrm{b} \\
& =\left(1 / \mathrm{I}_{\text {SOUR }}\right) \times \mathrm{V}_{\text {MEAS }}+0 \\
& =\mathrm{V}_{\text {MEAS }} / \mathrm{I}_{\text {SOUR }}
\end{aligned}
$$

where: $I_{\text {SOUR }}$ is the programmed current level of the I -source of the 7751/7752/7753. $1 / \mathrm{I}_{\text {SOUR }}$ is the " m " factor for the calculation ( $\mathrm{mX}+\mathrm{b}$ ).
$\mathrm{V}_{\text {MEAS }}$ is the measured voltage by the DMM of the Model 2790. It is the " X " variable for the calculation ( $\mathrm{mX}+\mathrm{b}$ ).

When the SxIohms calculation is selected, the Model 2790 measures voltage (X) and calculates $\mathrm{mX}+\mathrm{b}$ using the above factors. The displayed reading will be in ohms $(\Omega)$.

NOTE SxIohms cannot be selected if the $I$-source is set to $0 m A$. Since " $m$ " $=1 / I_{\text {SOUR }}$, dividing 1 by 0 would result in an erroneous reading (positive infinity).

When using the low ohms calculation, the highest DCV measurement range that can be selected is 1 V . Attempting to select a higher range will cause error - 222 (Parameter out of range). Attempting to turn autoranging on generates error - 221 "Settings conflict" over the GPIB or a "NO AUTORANGE" message on the display if done from the front panel AUTO key.

## SxVohms

Calculates and displays the high resistance reading for $7751 / 7753$ module in slot x (where $\mathrm{x}=1$ or 2 ). This ohms function is a shortcut for the $\mathrm{m} / \mathrm{X}+\mathrm{b}$ calculation. When selected, the following " $m$ " and " $b$ " factors are used:

$$
\begin{aligned}
& \mathrm{m}=-200,000 \times \mathrm{V}_{\text {SOUR }}(7751) \\
& \mathrm{m}=-20,000 \times \mathrm{V}_{\text {SOUR }}(7753) \\
& \mathrm{b}=0
\end{aligned}
$$

7751 calculation:

$$
\begin{aligned}
\mathrm{R} & =\mathrm{m} / \mathrm{X}+\mathrm{b} \\
& =\left(-200,000 \times \mathrm{V}_{\text {SOUR }}\right) / \mathrm{V}_{\text {MEAS }}+0 \\
& =-\mathrm{V}_{\text {SOUR }} / \mathrm{V}_{\text {MEAS }} \times 200,000
\end{aligned}
$$

7753 calculation:

$$
\begin{aligned}
\mathrm{R} & =\mathrm{m} / \mathrm{X}+\mathrm{b} \\
& =\left(-20,000 \times \mathrm{V}_{\text {SOUR }}\right) / \mathrm{V}_{\text {MEAS }}+0 \\
& =-\mathrm{V}_{\text {SOUR }} / \mathrm{V}_{\text {MEAS }} \times 20,000
\end{aligned}
$$

where: $\quad \mathrm{V}_{\text {SOUR }}$ is the programmed voltage level of the V-source of the 7751/7753.
For the 7751, (-200,000 x $V_{\text {SOUR }}$ ) is the " $m$ " factor for the calculation ( $m / X+b$ ). 200,000 is the value of the feedback resistor $\left(\mathrm{R}_{\mathrm{F}}\right)$ for the $\mathrm{I} / \mathrm{V}$ amplifier $\left(\mathrm{R}_{\mathrm{F}}=\right.$ $200 \mathrm{k} \Omega$ ).
For the $7753,\left(-20,000 \times V_{\text {SOUR }}\right)$ is the " $m$ " factor for the calculation ( $m / X+b$ ). 20,000 is the value of the feedback resistor $\left(R_{F}\right)$ for the $I / V$ amplifier $\left(R_{F}=\right.$ $20 \mathrm{k} \Omega$ ).
$\mathrm{V}_{\text {MEAS }}$ is the measured voltage by the DMM of the Model 2790. It is the " X " variable for the calculation ( $\mathrm{m} / \mathrm{X}+\mathrm{b}$ ).

When the SxVohms calculation is selected, the Model 2790 measures voltage (X) and calculates $\mathrm{m} / \mathrm{X}+\mathrm{b}$ using the above factors. The displayed reading will be in ohms $(\Omega)$. Note that the $\mathrm{V}_{\text {MEAS }}$ reading will be negative ( - ). Because the output of the $\mathrm{V} / \mathrm{I}$ amplifier is inverted, the negative value of " $m$ " will cause the ohms reading to be displayed as a positive value.

When using the high ohms calculation, the highest DCV measurement range that can be selected is 10 V . Attempting to select a higher range will cause error -222 (Parameter out of range). Attempting to turn autoranging on generates error - 221 "Settings conflict" over the GPIB or a "NO AUTORANGE" message on the display if done from the front panel AUTO key.

SxVohms overflow rules: If $\mathrm{V}>-10 \mathrm{mV}$, overflow occurs. If $\mathrm{V}<-12 \mathrm{~V}$, underflow occurs.

## Basic operation

NOTE If using switching module inputs, make sure the front panel INPUTS switch is set to the REAR position (in). If using the front panel inputs, the switch must be in the FRONT position (out).

1. Select and (if required) configure the desired math function as previously explained.
2. Select the desired measurement function.
3. Apply the signal to be measured to a switching channel input or to the front panel inputs.
4. If using a switching module (REAR inputs selected), close the appropriate channel(s) to connect the input to the DMM. If using the front panel inputs (FRONT inputs selected), it does not matter if a switching channel is closed. The result of the math calculation will be displayed.

## Front panel scanning (7702 only)

When a simple scan using a 7702 module is configured, the present math calculation will apply to all channels in the scan. When an advanced scan is configured, each channel can have its own unique math setup. Details to configure and run a scan are provided in Section 7.

## Remote scanning

For remote programming, the <clist> parameter is used to configure channels for a 7702 scan (Section 7). The <clist> parameter can also include memory pattern locations to allow scanning through 7751/7752/7753 channels (see "Memory patterns," page 2-36).

## Remote programming — math

## Math commands

> NOTE When measurements are performed, the readings are fed to other enabled processing operations, including Math. Appendix C explains data flow and the commands used to return Math results.

The commands to perform math calculations are listed in Table 5-2. Details on these commands follow the table.

NOTE Queries are not included in Table 5-2. All the math commands are provided in Table 15-1.

Table 5-2
Math commands

Commands ${ }^{1}$	Description	Def
CALCulate[1]:FORMat <name> [, <clist>]	Select calculation; <name> = NONE, MXB (mX+b), PERCent, RECiprocal (m/X+b), S1Iohms, S2Iohms, S1 Vohms, or S2Vohms.	PERC
CALCulate[1]:KMATh:MMFactor < NRf $>$ [, <clist>]	Set " $m$ " factor for $\mathrm{mX}+\mathrm{b}$ and $\mathrm{m} / \mathrm{X}+\mathrm{b}$; $\langle$ NRf> $=-4294967295$ to +4294967295 .	1
CALCulate[1]:KMATh:MBFactor <NRf> [, <clist>]	Set "b" factor for $\mathrm{mX}+\mathrm{b}$ and $\mathrm{m} / \mathrm{X}+\mathrm{b}$; $<$ NRf $>=-4294967295$ to +4294967295 .	0
CALCulate[1]:KMATh:MBFactor:TRACk <b>	Enable or disable source tracking ${ }^{3}$.	OFF
CALCulate[1]:KMATh:MBFactor:SOURce <name>	Selects source to be tracked; <name> = NONE, S1ISource, S2ISource, S1VSource, S2VSource.	NONE
CALCulate[1]:KMATh:MUNits <char> [, <clist>]	Set units for $\mathrm{mX}+\mathrm{b}$ and $\mathrm{m} / \mathrm{X}+\mathrm{b}$; see "Setting $\mathrm{mX}+\mathrm{b}$ and $\mathrm{m} / \mathrm{X}+\mathrm{b}$ units".	' X '
CALCulate[1]:KMATh:PERCent <NRf> [, <clist>]	Set reference value for percent; <NRf> = -4294967295 to +4294967295 .	1
CALCulate[1]:KMATh:PERCent:ACQuire	Use input signal as reference value.	
CALCulate[1]:STATe <b> [, <clist>]	Enable or disable calculation; <b> = ON or OFF.	(Note 2)
CALCulate[1]:DATA[:LATest]?	Return last result of calculation	
CALCulate[1]:DATA:FRESh?	Return last "fresh" result of calculation.	
Channel list parameter:		
7702 <clist> = (@SCH)		
where: S = Mainframe slot number (1 or 2)		
$\mathrm{CH}=$ Switching module channel number (must be 2 digits)		
7751/7752/7753 <clist> (DCV, $\Omega 2, \Omega 4$ ) = (@Mn) (see "Memory patterns," page 2-36).		

1. The <clist> parameter is used to configure one or more 7702 channels for a scan.
2. *RST default is ON, SYSTem:PRESet is OFF.
3. Selecting an ohms calculation enables source tracking. Selecting any other math function disables source tracking.

## Setting $\mathbf{m X}+\mathbf{b}$ and $\mathbf{m} / \mathbf{X}+\mathbf{b}$ units

The <char> parameter for CALCulate:KMATh:MUNits must be one character enclosed in single or double quotes. It can be any letter of the alphabet, the degrees symbol $\left({ }^{\circ}\right)$, or the ohms symbol ( $\Omega$ ).

The ohms symbol $(\Omega)$ and the degrees symbol $\left({ }^{\circ}\right)$ are not ASCII characters and therefore, must be substituted with the ' [' and ' $\$ ' characters as follows:

CALCulate:KMAth:MUNits ‘[' Use ohms symbol ( $\Omega$ ) as units designator.<br>CALCulate:KMAth:MUNits ' $\curlyvee \quad$ Use degrees symbol $\left({ }^{\circ}\right)$ as units designator.

## Percent reference

The :PERCent <NRf> command specifies the reference value for the percent calculation, while the :PERCent:ACQuire command uses the input signal as the reference value.

The :ACQuire command is only functional if a reading is available. If the instrument is overflowed ("OVERFLOW") or a reading has not been triggered ("------"), an execution error (-200) occurs when :ACQuire is sent.

The :PERCent <NRf> command is coupled to the :PERCent:ACQuire command. When a reference value is set using :PERCent $\langle$ NRf $\rangle$, the :PERCent? query command returns the programmed value. When reference is set using :ACQuire, the :PERCent? query command returns the acquired reference value.

## Reading math result

CALCulate[1]:DATA[:LATest]? or CALCulate:DATA:FRESh? can be used to retrieve the result of the selected math calculation. These commands do not trigger a reading. They simply return the last reading string. The reading reflects the result of the calculation.

While the instrument is performing measurements, you can use these commands to return the last reading. If the instrument is not performing measurements, CALC:DATA? will keep returning the same reading string.

CALC:DATA:FRESh? can only be used once to return the same reading string. That is, the reading must be "fresh." Sending this command again to retrieve the same reading string will generate error -230 (data corrupt or stale) or cause the GPIB to time-out. In order to again use DATA:FRESh? a new (fresh) reading must be triggered.

If math is disabled (CALCulate:FORMat NONE or CALCulate:STATe OFF), the "raw" reading will be retrieved by CALC:DATA? and CALC:DATA:FRESh?.

## Source tracking

The Model 2790 provides source tracking to ensure that the most recently set source amplitude is used in the selected ohms calculation. If the source output level changes, the " $m$ " constant for the calculation will change accordingly.

Source tracking is enabled automatically when the desired ohms function is selected. No other actions are required by the user.

However, if desired, source tracking can be disabled or the source that is being tracked can be changed. The :TRACk and :SOURCe commands are listed in Table 5-2.

## Math programming examples

Example \#1 - The following command sequence performs the mX+b calculation for channels 101 and 102 of the Model 7702. Keep in mind that after CALC:DATA? is sent, the Model 2790 has to be addressed to talk to send the math result to the computer.

```
CALC:FORM MXB ' Select mX+b calculation.
CALC:KMAT:MMF 2 ' Set 'm' factor to 2.
CALC:KMAT:MBF 100 ' Set 'b' factor to 100.
CALC:STAT ON ' Enable math calculation.
ROUT:CLOS (@101) ' Close channel 101.
CALC:DATA? ' Read mX+b result for channel 101.
ROUT:CLOS (@102) ' Close channel 102.
CALC:DATA? ' Read mX+b result for channel 102.
```

Example \#2 - The following command sequence configures channels 101 through 110 of the Model 7702 to perform the percent calculation when they are scanned.

```
CALC:FORM PERC,(@101:110) ' Select percent calculation.
CALC:KMAT:PERC 100,(@101:110) ' Set reference to 100.
CALC:STAT ON,(@101:*110) ' Enable math calculation.
```


## Ratio and channel average (7702 only)

## NOTE Ratio or channel average can only be performed with a 7702 module installed. You can skip this topic if not using a 7702 module in your test system.

With a 7702 switching module installed in the Model 2790, the ratio or average of two channels can be calculated and displayed. The ratio calculation can be done on the DCV function and the channel average calculation can be done on the DCV function.

Ratio and channel average are calculated as follows:

$$
\text { Ratio }=\frac{\text { Chan } A}{\text { Chan } B}
$$

Channel Average $=\frac{\text { Chan } \mathrm{A}+\text { Chan } \mathrm{B}}{2}$
where: Chan A is the selected (closed) channel.
Chan B is the paired channel for the installed switching module.
Ratio and Channel Average is the displayed result of the respective calculation.
Paired channels are used for ratio and channel average. For example, the Model 7702 switching module has 40 channels that can use ratio and channel average. The primary channels ( 1 through 20) are linked to the paired channels ( 21 through 40 ). Channel 1 is paired to channel 21 , channel 2 is paired to channel 22 , and so on.

When ratio or channel average is enabled, the Model 2790 measures the closed primary channel. It then opens the primary channel and closes and measures the paired channel. Ratio or channel average is then calculated from the two readings and displayed. If the Model 2790 is configured for continuous measurements, the two-channel scan will continue to repeat and refresh the display with each new calculated reading.

The ratio or channel average calculation can only be enabled if a valid switching channel is closed. If no channel is closed when you attempt to enable one of these calculations, the "CLOSE A CHAN" message will be displayed to remind you to first close a valid channel.

A primary channel must be closed before you can enable ratio or channel average. If a paired channel is instead closed, message "INVALID CHAN" will be displayed to indicate the settings conflict.

NOTE The various instrument operations, including Ratio or Channel Average, are performed on the input signal in a sequential manner. See Appendix C for details. It includes a flowchart showing where in the processing sequence that Ratio or Ch Avg operation is performed.

## Basic operation

## NOTE Make sure the INPUTS switch is set to the REAR position (in).

1. Select and configure (range, filter, rel, etc.) a valid measurement function. For ratio, the only valid function is DCV. For channel average, the only valid functions are DCV and TEMP (TCs only).
2. Use the $\downarrow$ or key to select (close) a primary channel (101 through 120 for the Model 7702). The CLOSE key can also be used.
3. Apply one signal to the selected primary channel and apply the other signal to the paired channel. For the Model 7702, if the closed primary channel is 101, the paired channel is 121 .
4. Enable Ratio or Channel Average:

- Ratio - Press SHIFT and then RATIO. The RATIO annunciator will turn on to indicate that the displayed readings are the result of the ratio calculation.
- Channel Average - Press SHIFT and then CHA-AVG. The DELTA annunciator will turn on to indicate that the displayed readings are the result of the channel average calculation. To disable channel average, again press SHIFT and then CH-AVG.

5. When finished, there are two ways to disable the calculation:

- Press the OPEN key. The calculation will disable and the channel will open.
- Press SHIFT and then RATIO to disable ratio or press SHIFT and then CHA-AVG to disable channel average. The calculation will disable, but the channel will remain closed.

NOTE The paired channel number is not displayed when it is measured. Only the primary channel is displayed during the 2-channel scan for the calculation.
Enabling ratio disables channel average and conversely, enabling channel average disables ratio.

If either of the channel readings over range ("OVRFLW"), the result of the calculation will also be "OVRFLW."

When using limits with ratio or channel average, the limit values will be compared to the result of the calculation and not to the individual channels.

With ratio or channel average enabled, pressing a function key will display the "EXIT RATIO" or "EXIT CHAN AVG" message to indicate that the calculation must first be disabled as explained in step 5 of the above procedure.

## Scanning

Ratio and channel average can be used in an advanced scan. The 2-channel scan for the calculation is performed for every primary channel that is scanned. For example, assume the Model 7702 is installed in slot 1 and is configured to perform the ratio calculation for 10 channels. When channel 101 is scanned, measurements are performed on channels 101 and on its paired channel (121). The calculation is performed and the result is displayed. When the next channel (102) is scanned, measurements are performed on that channel (102) and on its paired channel (122). The calculation is performed and the result is displayed. This process continues for each scanned channel.

When an advanced scan is configured, each channel can have its own unique setup. That is, one or more channels can use ratio and other channel(s) can use channel average. Details to configure and run a scan are provided in Section 7.

## Advanced scan configuration notes:

1. When a calculation (ratio or channel average) is enabled for a primary scan channel, the following setup actions occur:

- The calculation enables for the paired channel.
- The primary channel setup (function, range, rel, etc.) will be copied to the paired channel.

2. The filter setup for both scan channels are controlled by the primary channel.
3. After the calculation is enabled, the range setting can be independently set for both the primary and paired channel.
4. Before the calculation is enabled, rel can be independently set for both the primary and paired channel. In general, set up rel from the normal measurement state, then go into the advanced menu and enable rel for the primary and/or paired channel. See "Relative," page 5-2, for details on setting rel for scan channels.
5. Settings such as NPLC, aperture, bandwidth, OCOMP, etc., are ignored on the paired channel. These settings are controlled by the primary channel.
6. For remote programming, the <clist> parameter is used to configure channels for a scan (Table 5-3).

## Remote programming - ratio and channel average

## Ratio and channel average commands

The ratio and channel average commands are listed in Table 5-3. Details on these commands follow the table.

NOTE Queries are not included in Table 5-3. All the ratio and channel average commands are provided in Table 15-5.

Table 5-3
Ratio and channel average commands

Commands*	Description	Def
[SENSe[1]]   :RATio[:STATe] <b> [, <clist>] :RATio:DELay <NRf> [, <clist>] :CAVerage[:STATe] <b> [, <clist>] :CAVerage:DELay <NRf> [, <clist>]	Optional root command.   Enable/disable ratio; <b> = ON or OFF.   Set delay (in secs); <NRf> $=0$ to 99999.999.   Enable/disable channel average; <b> = ON or OFF.   Set delay (in secs); <NRf> $=0$ to 99999.999.	$\begin{aligned} & \text { OFF } \\ & 0.5 \\ & \text { OFF } \\ & 0.5 \end{aligned}$
$\begin{array}{\|r} \text { Channel list parameter (7702): } \\ \text { <clist> }=(@ S C H) \\ \text { where: } \quad=\text { Mainframe slot nun } \\ \text { CH }=\text { Switching module c } \\ \text { Examples: } \\ (@ 101)=\text { Slot 1, Char } \\ \\ \\ (@ 101,203)=\text { Slot 1, } \\ \\ (@ 101: 110)=\text { Slot 1, } \end{array}$	mber (1 or 2)   hannel number (must be 2 digits) nel 1   Channel 1 and Slot 2, Channel 3 Channels 1 through 10	

[^7]
## Enabling/disabling ratio or channel average

As with front panel operation, enabling ratio disables channel average and conversely, enabling channel average disables ratio.

## Ratio and channel average delay

:RATio:DELay or :CAVerage:DELay sets the delay between the two channel measurements for the enabled calculation. This delay is applied after the trigger delay in the trigger model (see Section 8 for details). This delay cannot be set from the front panel. The 0.5 s default delay keeps the relays from cycling too fast. Setting a shorter delay may shorten the life of the relays.

It does not matter which of the two commands you use to set the delay. The set delay affects both ratio and channel average.

## Ratio and channel average programming examples

Example \#1 - The following command sequence performs the ratio calculation using primary channel 102 of the Model 7702. After READ? is sent, the Model 2790 must be addressed to talk to return the result of the calculation.

```
*RST ' One-shot measure mode.
FUNC 'VOLT' ' Select DCV function.
ROUT:CLOS (@102) ' Close channel 102.
RAT ON ' Enable the ratio calculation.
READ? ' Read the result of the calculation.
```

Example \#2 - The following command sequence configures channels 103 and 105 for the ratio and channel average calculations. When channel 103 is scanned, the ratio calculation is based on DCV measurements of channels 103 and 123. When channel 105 is scanned, the channel average calculation is based on DCV measurements of channels 105 and 125.

```
FUNC 'VOLT',(@103) ' Set 103 for DCV.
RAT ON,(@103) ' Set 103 for ratio on.
FUNC 'VOLT',(@105) ' Set 105 for DCV.
CAV ON,(@105) ' Set 105 for channel average on.
```

Expressing DC or AC voltage in dB makes it possible to compress a large range of measurements into a much smaller scope. The relationship between dB and voltage is defined by the following equation:
$\mathrm{dB}=20 \log \frac{\mathrm{~V}_{\text {IN }}}{\mathrm{V}_{\text {REF }}}$
where: $\mathrm{V}_{\text {IN }}$ is the DC or AC input signal.
$\mathrm{V}_{\mathrm{REF}}$ is the specified voltage reference level.
The instrument will read 0 dB when the reference voltage level is applied to the input.
If a relative value is in effect when $d B$ is selected, the value is converted to $d B$ then REL is applied to dB . If REL is applied after dB has been selected, dB has REL applied to it.

NOTE The $d B$ calculation takes the absolute value of the ratio $V_{I N} / V_{R E F}$.
The largest negative value of $d B$ is $-160 d B$. This will accommodate a ratio of $V_{I N}=1 \mu \mathrm{~V}$ and $V_{\text {REF }}=1000 \mathrm{~V}$.

## dB configuration

Remote programming must be used to configure the Model 2790 for dB measurements. It cannot be configured from the front panel.

## Front panel scanning (7702 only)

Typically a 7702 scan using dB is configured and run using remote programming. However, once dB is selected using remote programming, a simple dB scan can be configured and run from the front panel. When the simple scan is configured, it will use the dB measurement setup for each channel in the scan. Details on configuring and running a scan are provided in Section 7.

## Remote scanning

For remote programming, the <clist> parameter is used to configure channels for a 7702 scan (Section 7). The <clist> parameter can also include memory pattern locations to allow scanning through 7751/7752/7753 channels (see "Memory patterns," page 2-36).

## Remote programming - dB

## dB commands

The dB commands are listed in Table 5-4. Details on these commands follow the table.

## NOTE Queries are not included in Table 5-4. All the dB commands are provided in Table 15-11.

Table 5-4
dB commands

\begin{tabular}{|c|c|c|}
\hline Commands* \& Description \& Def \\
\hline \begin{tabular}{l}
DCV dB commands \\
UNITs:VOLTage[:DC] <name>[, <clist>] \\
UNITs:VOLTage[:DC]:DB:REFerence <n> \\
ACV dB commands \\
UNITs:VOLTage:AC <name> [, <clist>] \\
UNITs:VOLTage:AC:DB:REFerence <n>
\end{tabular} \& \begin{tabular}{l}
Select DCV measurements; <name> = V or DB. \\
Set reference in volts; \(\langle\mathrm{n}\rangle=1 \mathrm{e}-7\) to 1000 . \\
Select ACV measurements; <name> = V or DB. \\
Set reference in volts; \(\langle\mathrm{n}\rangle=1 \mathrm{e}-7\) to 1000 .
\end{tabular} \& V
1

V
1 <br>

\hline Channel list parameter: \& | 2) mber (must be 2 digits) |
| :--- |
| n) (see "Memory patterns," page 2-36) | \& <br>

\hline
\end{tabular}

[^8]
## Programming examples - dB

Example \#1 - The following command sequence configures the Model 2790 to perform DCV dB measurements. A 1 V input will be measured as 0 dB .

```
FUNC 'VOLT' ' Select DCV function.
UNIT:VOLT DB ' Select DCV dB.
UNIT:VOLT:DB:REF 1V ' Set dB reference to 1V.
```

Example \#2 - The following command sequence configures channels 101 and 105 of the Model 7702 to perform ACV dB measurements when they are scanned. A 10V input will be measured as 0 dB .

```
FUNC 'VOLT:AC',(@101,105)
UNIT:VOLT:AC DB,(@101,105)
UNIT:VOLT:AC:DB:REF 10V,(@101,105)
```

' Set 101 and 105 for $A C V$.
' Set 101 and 105 for $d B$.
' Set 101 and 105 for $10 \mathrm{VAC} d B$
reference.

## 6 Buffer

- Buffer overview - Summarizes basic buffer (data store) capabilities.
- Front panel buffer - Explains how to store and recall readings and discusses the various statistics available on buffer data including minimum and maximum values, average (mean), standard deviation, and peak-to-peak values.
- Remote programming buffer - Summarizes the commands to control the data store and provides a programming example.


## Buffer overview

The Model 2790 has a data store (buffer) to store from 2 to 55,000 readings. The instrument stores the readings that are displayed during the storage process. Each timestamped reading includes the buffer location number and a timestamp.

The data store also provides statistical data on the measured readings stored in the buffer. These include minimum, maximum, average, peak-to-peak, and standard deviation.

NOTE When scanning, the readings are automatically stored in the buffer.
NOTE The various instrument operations, including buffer operation, are performed on the input signal in a sequential manner. See Appendix C for details. It includes flowcharts showing where in the processing sequence that buffer operations occur.

## Front panel buffer

## Auto clear

With buffer auto clear enabled, the buffer is cleared (readings lost) before a new storage operation starts. The buffer can be manually cleared by setting the number of readings to store (buffer size) to 000000 .

NOTE When editing the reading count over the front panel, press AUTO to reset the count to 000000 . You can then press $\langle E N T E R>$ to clear the buffer.

When buffer auto clear is disabled, the buffer is not cleared and the buffer size is set to 55000. Each subsequent storage operation appends the readings to the buffer. When the buffer fills with 55,000 readings, the storage process stops. The 55,000 readings are cleared before the next storage operation starts.
With buffer auto clear disabled, the only two valid buffer size values are 55000 and 000000 . Buffer size 000000 clears the buffer. Entering any other buffer size value resets the buffer size to 55000 .

NOTE If the buffer is empty when the Model 2790 is turned off, buffer auto clear will enable when it is turned back on.

If the buffer is not empty, the instrument will power up to the last auto clear setting. Keep in mind that if the instrument powers up with buffer auto clear off, buffer size is fixed at 55000. You will have to enable auto clear to change the buffer size.

The auto clear setting (on or off) is not affected by SYSTem:PRESet or *RST (front panel or remote operation). However, front panel FACTory defaults enables buffer auto clear.

## Enabling/disabling buffer auto clear

1. Press SHIFT and then SETUP.
2. Use the $\Delta$ and $\nabla$ keys to display the present state of buffer auto clear (BUF AUTOCLR); Y (yes) or N (no). To retain the present state of buffer auto clear, press ENTER or EXIT.

NOTE If you change the state of buffer auto clear, the buffer will clear.
3. To change the state of buffer auto clear, press $>$ to place the cursor on the present setting ( Y or N ).
4. Use the $\Delta$ or $\nabla$ key to display the desired setting ( $\mathrm{Y}=$ enabled, $\mathrm{N}=$ disabled) and press ENTER.

NOTE For remote programming, the TRACe:CLEar and TRACe:CLEAr:AUTO commands are used to clear the buffer (Table 6-1).

## Timestamps

Each stored reading is referenced to either a real-time clock timestamp or to a relative timestamp.
Relative timestamp - With relative selected, there are two timestamp types for each reading: absolute and delta. The absolute timestamp ( S ) references each stored reading to zero seconds. Therefore, the first reading in the buffer has an absolute timestamp of zero seconds. The delta timestamp (dS) indicates the time (in seconds) between the displayed reading and the reading before it. The resolution for each timestamp is 0.001 sec .

NOTE With auto clear disabled and the relative timestamp selected, every stored reading is referenced to the first reading (\#0), even if the buffer is stopped and started again. For example, assume you stored 10 readings in the buffer, and one hour later, you store 10 more readings. The timestamps for all 20 readings are referenced to the first reading. Therefore, the timestamp for the 11th reading (\#10) is one hour (3600 seconds).

When the Model 2790 is turned off, the relative timestamp resets to 0 sec when the instrument is turned back on. If you have readings stored in the buffer and auto clear is disabled when the unit is turned off, subsequent stored readings will be appended to the old group of readings. However, the relative timestamps for the new readings will be referenced to 0 sec.

When recalling stored readings from the front panel, both absolute and delta timestamps are provided. For remote operation, the absolute or delta timestamp is returned with each buffer reading. The TRACe:TSTamp:FORMat command selects the relative timestamp type (Table 6-1).

Real-time clock timestamp - With the real-time clock selected, each stored reading is timestamped with the time and date. For the time, the seconds reading has 0.01 sec resolution.

## Configuring timestamp

## Setting time and date

For the real-time clock, the time and date is set at the factory. However, you can check and correct the time and date as follows:

Perform the following steps to set the time:

1. Press SHIFT and then SETUP.
2. Use the $\Delta$ and $\nabla$ keys to display SET TIME and press ENTER. The displayed clock will be running in the hour/minute/second AM/PM format.
3. Use the edit keys ( $\downarrow, \Delta$, and $\nabla$ ) to set the hour, minute, and AM/PM (seconds cannot be set), and press ENTER.

Perform the following steps to set the date:

1. Press SHIFT and then SETUP.
2. Use the $\Delta$ and $\nabla$ keys to display SET DATE and press ENTER to display the date in the month/day/year format.
3. Use the edit keys ( $\downarrow, \Delta, \Delta$, and $\nabla$ to set the date (month/day/year) and press ENTER.

## Selecting timestamp

Perform the following steps to select either the real-time clock timestamp or the relative timestamp:

NOTE Changing the timestamp will clear the buffer if a storage is in process. The message "BUF CLEARED" will be displayed to indicate the buffer readings were lost. If no storage is in process, changing the timestamp will not clear the buffer.

1. Press SHIFT and then SETUP.
2. Use the $\Delta$ and $\nabla$ keys to display "TSTAMP."
3. Press the key to place the cursor on the presently selected timestamp (REL or RTCL).
4. Use the $\Delta$ or $\nabla$ key to display the relative (REL) or real-time clock (RTCL) and press ENTER.

## Storing readings

Perform the following steps to store readings:

1. Set up the Model 2790 for the desired configuration.
2. Press the STORE key.
3. Use the $\downarrow, \Delta, \Delta$, and $\nabla$ keys to specify the number of readings to store in the buffer ( 2 to 55000). Pressing the AUTO key sets the readings count to 000000 .

NOTE With buffer auto clear disabled, the only valid buffer size values are 55000 and 000000 (which clears the buffer). Any other buffer size value is ignored.
4. Press ENTER. The asterisk (*) annunciator turns on to indicate the buffer is enabled. It will turn off when the storage is finished.
5. The buffer can be stopped at any time by pressing EXIT.

NOTE Stored readings are not lost when the instrument is turned off. To clear the buffer, set the reading value to " 000000 " and press ENTER.

For remote programming, the continuous storage mode can be selected. After the buffer fills, operation wraps around to the beginning of the buffer (location \#0) and starts to overwrite old reading data (see TRACe:FEED:CONTrol command in Table 6-1).

## Recalling readings

Readings stored in the buffer are displayed by pressing the RECALL key. The readings are positioned at the left side of the display, while the buffer location number (reading number) and timestamps are positioned at the right side.

Perform the following steps to view stored readings and buffer statistics:

1. Press RECALL. The "BUFFER" annunciator indicates that stored readings are being displayed. The double-arrow annunciator indicates that more data can be viewed with the $\downarrow, \Delta$, and $\nabla$ keys.
2. As shown in Figure 6-1 and Figure 6-2, use the $\boldsymbol{\downarrow}, \Delta, \Delta$, and $\nabla$ keys to navigate through the reading numbers, reading values, statistics, and timestamps. For any of the buffer statistics (standard deviation, average, peak-to-peak, minimum, and maximum), the "STAT" annunciator is on.

> NOTE The longer you hold in the $\Delta$ or $\nabla$ key, the faster you will scroll through the buffer. After a while, scrolling speed will increase by incrementing (or decrementing) the buffer reading number by 100 and then finally by 500. When you get close to the desired reading number, release the $\Delta$ or $\nabla$ key. Again press and hold in the $\Delta$ or $\nabla$ key to scroll one reading at a time.

Figure 6-1
Recalling buffer data - relative timestamp


Figure 6-2
Recalling buffer data - real-time clock timestamp


## Buffer statistics

## Minimum and maximum

This mode displays the minimum and maximum readings stored in the buffer. The buffer location number and timestamp are also provided for these readings.

## Peak-to-peak

This mode displays the peak-to-peak reading $($ peak-to-peak $=$ Maximum - Minimum $)$.

## Average

The average mode displays the mean (average) of all measured readings stored in the buffer. The following equation is used to calculate mean:

$$
y=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

$$
\begin{array}{ll}
\text { where: } & \mathrm{y} \text { is the average. } \\
& \mathrm{X}_{\mathrm{i}} \text { is a stored reading. } \\
\mathrm{n} \text { is the number of stored readings. }
\end{array}
$$

## Standard deviation

This mode displays the standard deviation of buffered readings. The following equation is used to calculate standard deviation:
$y=\sqrt{\frac{\sum_{i=n-1}^{n} X_{i}^{2}-\left(\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)}{n-1}}$
where: $y$ is the standard deviation.
$\mathrm{X}_{\mathrm{i}}$ is a stored reading.
n is the number of stored readings.
NOTE If the standard deviation calculation is being performed on a buffer that has more than 1000 readings, the "CALCULATING" message will flash to indicate that the Model 2790 is busy. While busy with the calculation, front panel keys will not operate.

## Remote programming — buffer

NOTE When readings are stored in the buffer by the TRACe command (or by front panel data store operation), INIT and multi-sample READ? queries are locked out. With readings in the buffer that were stored in that manner, you cannot use the INIT or READ? command if sample count is $>1$ (error -225 , out of memory).

NOTE The measurement event register can be read to check when the buffer becomes $1 / 4,1 / 2,3 / 4$, or full. Status registers are covered in Section 11.

## Buffer commands

NOTE When measurements are performed, the readings are fed to other enabled operations, including the Buffer. Appendix C explains data flow and the commands used to read the buffer and buffer statistics.

The commands to perform buffer operations are listed in Table 6-1. Details on these commands follow the table.

NOTE Optional command words and most queries are not included in Table 6-1. The unabridged tables for all SCPI commands are provided in Section 15.

## Table 6-1

## Buffer commands

Command	Description	Default ${ }^{1}$	Ref
SYSTem:TIME <hr, min, sec>	Set clock time in 24-hour format.		a
SYSTem:DATE <yr, mo, day>	Set clock date; yr specified as 20xx.		b
SYSTem:TSTamp:TYPE <name>	Select timestamp; <name> = RELative or RTCLock.	REL	c
SYSTem:TSTamp:TYPE?	Query timestamp type that will be used for the next buffer storage.		c
TRACe:TSTamp:TYPE?	Query timestamp type for readings presently in buffer.		c
TRACe:CLEar	Clear the buffer immediately.		d
TRACe:CLEar:AUTO <b> TRACe-FREE?	Enable/disable buffer auto-clear; $\langle\mathrm{b}\rangle=\mathrm{ON}$ or OFF.	ON	d
TRACe:FREE?   TRACe:POINts <NRf>	Query bytes available and bytes in use.   Specify size of buffer; <NRf> $=2$ to 55000 .	100	e
TRACe:TSTamp:FORMat <name>	Select timestamp format; <name> $=$ ABSolute or DELTa.	ABS	g
TRACe:FEED <name>	Select source of readings; <name> = SENSe[1], CALCulate[1] or NONE.	CALC	h
TRACe:FEED:CONTrol <name>	Set buffer control; <name> = NEVer, NEXT, or ALWays.	NEV	h
TRACe:DATA?	Read all readings in the buffer.		i
TRACe:DATA:SELected?   <start>, <count>	Specify readings to be returned; <start> = starting point, <count> = number of readings.		j
TRACe:NEXT?	Query buffer location for next stored reading.		j
TRACe:NOTify <NRf>	Specify number of stored readings that will set Trace Notify bit (B6) of measurement event register; $<$ NRf $>=2$ to 109999 (must be less than TRACe:POINts value).		k
FORMat:ELEMents <item list>	Specify elements for TRACe:DATA? response message; <item list> = READing, CHANnel, UNITs, RNUMber, and TSTamp.	(Note 2)	1
CALCulate2:FORMat <name>	Select buffer statistic; <name> = MINimum, MAXimum, MEAN, SDEViation, PKPK, or NONE.	NONE	m
CALCulate2:STATe <b>	Enable/disable statistic calculation; $\langle\mathrm{b}>=\mathrm{ON}$ or OFF.	OFF	m
CALCulate2:IMMediate	Calculate data in buffer.		m
CALCulate2:IMMediate?	Calculate data and read result.		m
CALCulate2:DATA?	Read the selected buffer statistic.		m

Notes:

1. SYSTem:PRESet and *RST have no effect on TRACe commands. The listed defaults for TRACe commands are set at the factory.
2. The SYSTem:PRESet and *RST default is READ, UNIT, RNUM, and TST.

## a. SYSTem:TIME <hr, min, sec>

## Set clock time

Use to set the clock time in the 24 -hour format ( $\mathrm{hr} / \mathrm{min} / \mathrm{sec}$ ). Seconds can be set to 0.01 sec resolution. Examples:

```
SYST:TIME 13, 23, 36 'Set time to 1:23:36 PM.
SYST:TIME 3, 25, 28.5 'Set time to 3:25:28.5 AM.
```

The SYSTem:TIME? command can be used to read the time. Note that it returns the actual clock time and not the time parameter specified by the TIME command.
b. SYSTem:DATE <yr, mo, day>

## Set clock date

Use to set the clock date in the year/month/day format. When setting the year, a 4-digit value must be used. Example:

SYSTem: DATE 2002, 11, 10 'Set clock date to November 11, 2002.

## c. SYSTem:TSTamp:TYPE RELative I RTClock SYSTem:TSTamp:TYPE? TRACe:TSTamp:TYPE?

Select timestamp
Query timestamp type; next storage
Query timestamp type; readings in buffer
SYSTem:TSTamp:TYPE <name> — Use to select the relative timestamp or the real-time timestamp. Note that changing the timestamp will clear the buffer if a storage is in process. If no storage is in process, changing the timestamp will not clear the buffer.

SYSTem:TSTamp:TYPE? and TRACe:TSTamp:TYPE? - Both of these commands query the timestamp type. However, SYSTem:TSTamp:TYPE? queries the timestamp that will be used for the next storage operation, while TRACe:TSTamp:TYPE? queries the timestamp for readings that are presently stored in the buffer.

## d. TRACe:CLEar TRACe:CLEar:AUTO ON I OFF

## Clear the buffer <br> Control (on/off) buffer auto-clear

TRACe:CLEar - Used to clear the buffer. Buffer readings are not lost (cleared) when the Model 2790 is turned off.

When TRAC:CLE is sent while displaying stored readings, the message "BUF CLEARED" is briefly displayed and the instrument returns to the normal measurement state.

TRACe:CLEar:AUTO - With auto-clear enabled, the buffer will automatically clear when the storage process starts. When disabled, readings will append to old readings in the buffer until the buffer becomes full ( 55,000 readings) or the storage process is stopped. Disabling auto-clear automatically sets the buffer size to 55,000 .
e. TRACe:FREE?

Query status of storage memory
Returns two values separated by commas. The first value indicates in bytes, memory available for storage, while the second value indicates the number of bytes being used for stored readings.
f. TRACe:POINts 2 to 55000

## Set buffer size

With buffer auto-clear enabled, you can set the buffer to store from 2 to 55,000 readings. A buffer size of zero or one is not valid (error -222).

With buffer auto-clear disabled, you cannot use this command to set buffer size (error -221) because it is fixed at 55,000 .

NOTE The $1 / 4$ full and $3 / 4$ buffer full measurement events are not intended to be used with buffer size smaller than four readings.

## g. TRACe:TSTamp:FORMat ABSolute I DELta Select timestamp format

For front panel operation, both timestamp formats (absolute and delta) can be recalled. For remote programming, you can only use one timestamp at a time.

## NOTE Changing the timestamp format clears the buffer.

The timestamp will only be included with a returned buffer reading if it is specified as a data element (see FORMat:ELEMents).

## h. TRACe:FEED SENSe I CALCulate I NONE TRACe:FEED:CONTrol NEXTI ALWays I NEVer

## Select source of readings Select buffer control

TRACe:FEED - The SENSe parameter selects readings before any enabled $\mathrm{mX}+\mathrm{b}$, Percent, or Reciprocal math calculation. For the CALCulate parameter, the result of the calculation is stored in the buffer. The NONE parameter disables storage into the buffer. Math functions are covered in Section 5.

NOTE In order to store readings in the buffer, TRACe:FEED cannot be set to NONE.
TRACe:FEED:CONTrol - Selecting NEXT enables the buffer. After the specified number of readings (buffer size) are stored, buffer operation disables. The ALWays parameter places the buffer into a continuous filling mode. After the specified number of readings are stored, operation wraps back to the first buffer location and overwrites the previous readings. The NEVer parameter disables buffer operation.

## i. TRACe:DATA?

## Read buffer

Use TRACE:DATA? to retrieve all readings that are stored in the buffer. You can send this command even if the instrument is still storing readings. When TRACe:DATA? is sent, it will return the readings stored up to that point in time. Subsequent TRACe:DATA? commands will not retrieve readings already returned. However, once the buffer has filled and you have retrieved all buffer readings, you can again send TRACe:DATA? to retrieve all the stored readings.

The data elements returned with each stored reading depends on which ones are selected with FORMat:ELEMents command (see Section 14 for details).

## j. TRACe:DATA:SELected? <start>, <count> TRACe:NEXT?

## Specify readings to return Query location of last buffer reading

Use the TRACe:DATA:SELected? command to specify which stored readings to return. The <start> parameter specifies the first stored reading to return. Note that the first stored reading in the buffer is $\# 0$. The <count> parameter specifies the number of readings to return.
When the storage process is aborted, you can use TRACe:NEXT? to determine the buffer location for the next stored reading. For example, if the last reading is stored at memory location \#36, TRACe:NEXT? will return the value 37. This query is useful when using the buffer in the continuous storage mode (TRACe:FEED:CONTrol ALWays) as demonstrated by the following example:

Example - Assume the buffer is configured for continuous (wrap-around) storage and the buffer size is 100 . At some point you stop the storage process and want to return all the readings that were stored since the last time the buffer filled. The following command will return the buffer location for the next stored reading:

TRACe: NEXT?

```
Query buffer location for next stored
reading.
```

Assume that the above query returned value 37 . Now you can use that value as the <count> parameter for the following command to return the 37 readings ( 0 through 36):

```
TRACe:SELected:DATA? 0, 36 ' Return buffer readings 0 through 36.
```

NOTE When using the RS-232 interface, the TRAC:DATA:SEL? command should always be used when recalling more than 100 points of buffer data. For large buffers, the PC may lose synchronization and data can be lost. To avoid this, use this query command to recall buffer data in 100 point blocks.

## k. TRACe:NOTify <NRf>

$<$ NRf $>=2$ to 109999
Use this command to specify the number of stored readings that will set bit B6 (Trace Notify) of the measurement event register. See Section 11 for details on status structure.

The maximum valid parameter value for this command is one less than the present buffer size (which is set by the TRACe:POINTs command). For example, TRACe:POINts 55000 sets the buffer size to 55,000 readings. For this buffer size, the maximum valid parameter value for TRACe:NOTify is 54999 (55000-1).

When an invalid parameter value is specified, the command is ignored and causes error -222 (parameter data out of range).

1. FORMat:ELEMents <item list>

## Select elements for TRACe:DATA?

<item list> = READing, CHANnel, UNITs, RNUMber, TSTamp
The data returned by TRACe:DATA? can include from one to all five data elements shown in the above item list. For example, if you want the units and reading number included with the reading, you would send this command:

FORMat:ELEMents READing, UNITs, RNUMber.
Only the elements defined by the list are used. Elements not included in the list are not used. You can specify the elements in the list in any order, but they must be separated by commas.

The data elements that can accompany the reading are summarized as follows. More details on data elements are provided in Section 14, "FORMat commands."

- CHANnel - References the reading to a switching module channel. If the reading is not for a switching module, channel 000 will be returned.
- UNITs - Identifies the measurement function (i.e., VDC).
- RNUMber - References the reading to the buffer reading number.
- TSTamp - Timestamps the reading (ABSolute or DELTa timestamp as set by the TRACe:TSTamp:FORMat command).

FORMat:ELEMents READing, CHANnel, UNITs, RNUMber, TSTamp, LIMits.
Choose the elements to be outputted with each DATA? or each buffer reading in a TRAC:DATA?. RNUMber is reading number; TSTamp is Timestamp as set by the SYST:TSTamp:TYPE command. The other elements should be self-explanatory. The query acts the same as 2000, except there are six possible elements instead of 3 . Therefore, if only READ is selected, then FORM:ELEMents? returns the string "READ,,,,"." The LIMits are returned in ASCII format as a four-bit number abcd, where a corresponds to High Limit 2, b is Low Limit 2, c is High Limit 1, and dis Low Limit 1. A zero in the bit position indicates a passing limit, while a 1 indicates failure. In the binary formats, the limit information must be decoded from the value $0-15$ returned, where the MSB is High Limit 2 and the LSB is Low Limit 1. For example, a value of 10 returned in the limits field would indicate that High Limit 2 and High Limit 1 both failed.

Real-time timestamps are not available for output data formats other than ASCII. The element TSTamp can still be selected and will show up when FORM:ELEM? is queried, but no timestamp will be included in the output data.
m. CALCulate2:FORMat <name> CALCulate2:STATe ON I OFF CALCulate2:IMMediate CALCulate2:IMMediate? CALCulate2:DATA?

Select buffer statistic Control (on/off) buffer statistic Calculate data in buffer Calculate and read result Read result of statistic calculation

<name> = MINimum I MAXimum I MEAN I SDEViation I PKPK I NONE

After the selected buffer statistic is enabled, IMMediate or IMMediate? must be sent to calculate the statistic from the data in the buffer. The CALCulate2:DATA? command does not initiate a calculate operation. It simply returns the result of the last calculation. If new data is stored in the buffer, you must again send IMMediate or IMMediate? to recalculate the statistic from that new data.

NOTE If the standard deviation calculation is being performed on a buffer that has more than 1000 readings, the "CALCULATING" message will flash to indicate that the Model 2790 is busy. While busy with the calculation, remote programming commands will not execute.

Use *OPC or *OPC? with CALC2:IMM when performing the standard deviation calculation on a large buffer. See Section 12 for details on *OPC and *OPC?

## Programming example

The following command sequence stores 20 readings in the buffer and then calculates the mean for those readings. Note that after sending a query command, the Model 2790 must be addressed to talk.

```
Store readings:
TRAC:CLE:AUTO ON
TRAC:POIN 20
' Enable buffer auto-clear.
' Set buffer size to 20.
TRAC:FEED SENS
TRAC:FEED:CONT NEXT
' Select raw readings for storage.
' Start storage process.
TRAC:DATA?
' Request all stored readings.
' Calculate mean:
CALC2:FORM MEAN ' Select mean calculation.
CALC2:STAT ON ' Enable mean calculation.
CALC2:IMM? ' Perform calculation and request result.
```


## 7

## Scanning

WARNING The 7702 module is designed to handle DC peak voltages up to 300V generated by external and potentially unlimited energy type sources. When the 7702 module is used in conjunction with the $7751 / 7753$ module, it can be used safely up to the full output voltage capability of the 7751/7753 V-source (500V DC peak). This DOES NOT imply the 7702 module can be used with EXTERNAL SOURCES (i.e., non-7751/7753 derived) above 300V DC peak.

NOTE Standard scanning can only be performed using a 7702 switching module. To scan through 7751/7752/7753 channels, use memory patterns (Section 2).

- Scanning fundamentals - Explains channel assignments (slot/channel programming format), the difference between sequential and non-sequential scans, and the basic scan process. Block diagrams (known as trigger models) are provided to help explain the STEP and SCAN operations.
- Scan configuration (7702 only) — Provides the step-by-step procedures to configure a simple scan or an advanced scan. Covers other scan options, including delay, monitor, auto configuration, saving setups, and auto scan.
- Scan operation (7702 only) — Provides the step-by step procedures to perform a basic scan, a manual/external trigger scan, and a monitor scan.
- Remote programming - scanning - Provides the commands used for scan operation and includes a simple scanning programming example. Also summarizes various aspects of remote scan operation.
- Scanning examples - Provides a couple of typical scan operation examples (front panel and remote programming).


## Scanning fundamentals

## 7702 module scanning

The Model 2790 can scan the channels of up to two installed Keithley Model 7702 switching modules. Each scan channel can have its own unique setup. Aspects of operation that can be uniquely set for each channel include function, range, rate, AC bandwidth, rel, filter, digits, math, $\Omega$ offset compensation, TEMP transducers, limits, channel average, channel ratio, and volts dB .

NOTE Readings for scanned channels are automatically stored in the buffer. With buffer auto clear enabled (which is the default), the buffer clears when the scan is started. When disabled, scan readings are appended to the buffer. The TRACe:CLEAr:AUTO $<b>$ command is used to enable/disable buffer auto clear (Section 6).

A pseudocard can be installed in an empty slot. With the 7702 pseudocard installed, the instrument will operate as if a Model 7702 switching module is installed in the slot. This allows the user to configure a scan and exercise its operation before the switching module is installed in the Model 2790. Use the following commands to install 7702 pseudocards in empty slots:

SYSTem:PCARd1 C7702	'Install' 7702 pseudocard in slot 1.
SYSTem:PCARd2 C7702	'Install' 7702 pseudocard in slot 2.

Pseudocards for other switching modules can instead be installed. Details on installing other pseudocards are provided in Section 2.

There are SCPI commands to query the capabilities of the installed switching modules. For example, the following queries are provided to determine which channels of a Model 7702 in slot 1 are available for volts/2-wire ohms and which channels are available for amps. Note that the returned values for the Model 7702 switching module are shown in parenthesis.

```
SYSTem:CARD1:VCHannel[:STARt]? ' Query first volt/\Omega2 channel(7702; "1").
SYSTem:CARD1:VCHannel:END? ' Query last volt/\Omega2 channel (7702; "20").
SYSTem:CARD1:ACHannel[:STARt]? ' Query first amps channel (7702; "21").
SYSTem:CARD1:ACHannel:END? ' Query last amps channel (7702; "22").
```

All the commands to query switching module capabilities are covered in Table 15-8.

## Channel assignments

A switching module has a certain number of channels. For example, the Model 7702 switching module has 42 channels ( 1 through 42). When you encounter a 1 or 2-digit channel number in this manual, the switching module channel is the point of discussion.

A switching module can be installed in one of two slots of the mainframe. Therefore, to close/open or scan a channel, it is necessary to specify the slot location and channel num-
ber of the switching module. This is accomplished by using a 3-digit channel number for the mainframe. The first digit (1 or 2) indicates the slot number, and the next two digits indicate the channel number of the switching module. Examples:

Channel 101 Slot 1, channel 1
Channel 112 Slot 1, channel 12
Channel 220 Slot 2, channel 20

## Sequential and non-sequential scans

Only a sequential scan can be configured from the front panel. For a sequential scan, the scan proceeds from the lowest numbered channel to the highest. For example, assume channels $101,102,105,108$, and 109 are selected for a scan. The scan will run in this order: $101>102>105>108>109$.

For remote programming, a non-sequential scan can be configured. Channels are scanned in the order that they are listed in the scan list. This allows backward scanning. For example, assume the following scan list:
(@ 101, 102, 104, 105, 103, 109)
The above scan will run in this order: $101>102>104>105>103>109$. Notice that after channel 105 is scanned, the unit backs up to scan channel 103. It then proceeds forward to scan channel 109. Any scan that performs backward scanning is considered a nonsequential scan. For more information on non-sequential scanning, see the reference information for the ROUT:SCAN command that follows Table 7-1.

NOTE Non-sequential scanning is only intended to be performed using remote programming. Unexpected results may occur if a non-sequential scan is run from the front panel.

## Channel assignments

A switching module has a certain number of channels. For example, the Model 7702 switching module has 42 channels ( 1 through 42). When you encounter a 1 or 2-digit channel number in this manual, the switching module channel is the point of discussion.

A switching module can be installed in one of two slots of the mainframe. Therefore, to close/open or scan a channel, it is necessary to specify the slot location and channel number of the switching module. This is accomplished by using a 3-digit channel number for the mainframe. The first digit ( 1 or 2 ) indicates the slot number and the next two digits indicate the channel number of the switching module. Examples:

Channel 101 Slot 1, channel 1
Channel 112 Slot 1, channel 12
Channel 220 Slot 2, channel 20

## Scan process

Basic scan - For functions that use 2-wire measurements, the basic scan process is to (1) open any closed channel, (2) close a channel, and then (3) perform the measurement. This 3 -step process is repeated for each channel in the scan. The last scanned channel opens.

Channel pair scan - For the functions that use 4 -wire measurements ( $\Omega 4$ and 4 -wire RTD TEMP), the scan process uses paired channels. The scan process is to (1) open any closed channels, (2) close the paired channels, and then (3) perform the 4 -wire measurement. The last scanned channel pair opens.

NOTE For the Model 7702 switching module, primary channels 1 through 20 are paired to channels 21 through 40. Channel 1 is paired to channel 21 , channel 2 is paired to channel 22, channel 3 is paired to channel 23, and so on.

Calculations using channel pairs - Ratio and channel average performs measurements on two channels and then calculates (and displays) the result. Therefore, these 2-channel calculations also use paired channels. The scan process is to (1) open any closed channels, (2) close the primary (displayed) channel and perform a measurement, (3) open the primary channel, (4) close the paired channel and perform a measurement, (5) calculate and display the result, and finally (6) open the paired channel.

NOTE When scanning, the displayed channel number (i.e., 101) is not necessarily the channel that is presently closed.

If both a reading AND a scan channel are displayed, the reading and annunciators pertains to that channel, but that channel is no longer closed. The next channel in the scan list is the one that is now closed. Therefore, the reading (and annunciators) pertains to the channel and does not necessarily indicate the present state of the Model 2790.

If the display is blanked (-------), the displayed channel is closed and has not been measured.

## Trigger models

NOTE The following information on trigger model operations apply specifically to front panel operation.

Block diagrams, known as trigger models, are used to show the two fundamental scan functions: STEP or SCAN. These two scan functions are enabled by the STEP and SCAN keys respectively. The trigger models for scanning are shown in Figure 7-1 and Figure 7-2.

NOTE The trigger model in Figure 7-2 also applies for bus operation. See "Remote programming - scanning" page 7-26, for differences between front panel and remote scanning.
For the following discussion, refer to Figure 7-1 for STEP operation and Figure 7-2 for SCAN operation.

Figure 7-1
Trigger model with STEP function (7702 module)


Figure 7-2
Trigger model with SCAN function (7702 module)


STEP operation overview - When the STEP key is pressed, the Model 2790 leaves the idle state, closes the first channel, and waits for the programmed trigger event. After the trigger is detected, the instrument may be subjected to one or more delays before performing the measurement.
After a reading is taken and stored in the buffer, the Model 2790 outputs a trigger pulse, opens the closed channel, and then closes the next channel in the scan list. The instrument then waits for another trigger event to measure the channel. After the last channel is scanned, the instrument returns to the idle state with the first channel in the scan list closed.

SCAN operation overview - When the SCAN key is pressed, the Model 2790 leaves the idle state, closes the first channel, and waits for the programmed trigger event. After the trigger is detected, the instrument may be subjected to one or more delays before performing the measurement.

After a reading is taken and stored in the buffer, the Model 2790 opens the closed channel, and then closes the next channel in the scan list. Operation keeps looping around to measure all channels in the scan list. After the last channel in the scan list is measured, the Model 2790 outputs a trigger pulse.
If programmed to again scan the channels in the scan list, the Model 2790 will wait at the control source for another trigger event. After all the scan list channels are again measured, the Model 2790 will output another trigger pulse. After all programmed scans are completed, the instrument returns to the idle state with the first channel in the scan list closed.

The individual components of the trigger models are explained as follows:

## Idle

When a scan is enabled (STEP or SCAN annunciator on), operation goes into the idle state and immediately drops down to the control source. Note that after the last channel in the scan is measured, operation returns to the idle state, where measurements are halted and the first channel in the list is closed.

## Control sources

For front panel operation, there are three control sources to manage the scan: Immediate, Timer, and External Trigger. Operation is held up at the selected control source until the appropriate trigger event is detected.

STEP operation - When the trigger event is detected, a channel is measured. The scan pointer then loops back to the control source and waits for the next trigger event to occur.
SCAN operation - When the trigger event is detected, all the channels in the scan list are scanned. The scan pointer then returns to the control source and waits for the next trigger event to be detected.

## Immediate control source

With immediate triggering, event detection is immediate allowing channels to be scanned.

## Timer control source

With the timer source enabled (selected), event detection is immediately satisfied. On the initial pass through the loop, the Timer Bypass is enabled allowing operation to bypass the Timer and continue to the Delay block.

On each subsequent pass through the loop, the Timer Bypass is disabled. Operation is then delayed by the Timer or the Delay. If the user-set Timer interval is greater than the user-set Delay, the Timer will control the length of the delay. Otherwise, the length of the delay is controlled by the user-set Delay period.

The Timer interval can be set from 0 to 999999.999 seconds. The timer resets to its initial state when the scan is completed.
STEP operation - As shown in Figure 7-1, the timer control source affects the timing between scanned channels.

SCAN operation - As shown in Figure 7-2, the timer control source affects the timing between scans. It has no effect on the timing between scanned channels.

## External trigger control source

Pressing the EX TRIG key places the instrument in the external trigger mode (TRIG annunciator on). When the STEP or SCAN key is then pressed, that scan is enabled. However, the scan does not start until an external trigger is received or the TRIG key is pressed. The external trigger or TRIG keypress satisfies event detection.
STEP operation - Each time an external trigger is received (or TRIG key is pressed), one channel is scanned.

SCAN operation - Each time an external trigger is received (or TRIG key is pressed), one complete scan is performed.

## Delays

As shown in the trigger models, operation may be subjected to one or more delays before a channel is measured.

NOTE As previously explained, if the timer control source is selected and its user-set interval is greater than the user-set Delay, the Timer interval will supersede the Delay period after the first pass through the loop.

Delay (Auto or Manual) - The user can select either auto delay or manual delay. With auto delay selected, the instrument automatically selects a delay period that will provide sufficient settling for function and autorange changes, and multi-phase measurements.

The auto delay period cannot be adjusted by the user. It is a fixed delay for the selected function and range (Table 8-1).

NOTE When scanning, the auto delay times in Table 8-1 are valid for all control sources (Immediate, External, Timer, Manual, or Bus).

With manual delay selected, the user can set the delay period from 0 seconds to 99 hours, 99 minutes, 99.999 seconds. However, if you set a delay shorter than the corresponding auto delay period, measurement uncertainty increases (noisy and/or unsettled readings may result).

NOTE Keep in mind that if the timer control source is selected, the Delay period is only in effect for the first pass through the loop.

Ratio/Chan Average Delay - With ratio or channel average enabled, a delay is typically used to keep the channel relays from cycling too fast. The default delay period is $0.5 \mathrm{sec}-$ onds but can be set from 0 to 99999.999 seconds using remote programming (see Section 5 for details). Ratio and channel average are covered in Section 5.

NOTE The Ratio/Chan Average Delay is in addition to the Timer or Delay (Auto or Manual). That is, it occurs after the Timer interval or Delay period elapses.

## Device action

The channel measurement process is performed at this block. If repeat filter is enabled, the filter process is also performed.

## Reading count

NOTE For both STEP and SCAN, the reading count specifies the number of readings to store in the buffer.

STEP operation - The reading count specifies the number of channels to scan. This can be equal to, less than, or greater than the number of channels in the scan list. The last scanned channel remains closed. If you start the scan again, it will start at the next channel.

If the reading count is set to infinity (INF), the scan will continuously repeat until you stop it.

NOTE One counter is used for STEP operation. As shown in Figure 7-1, reading count sets the Trigger Counter.

SCAN operation - When a scan is started, one or more complete scans will be performed. The number of channels in the scan list determines the number of channels for each scan. The reading count determines the number of scans to perform and is best explained by an example. Assume there are 10 channels in the scan list. If you set the reading count to 10 or less, one scan of the 10 channels will be performed. If you set the reading count to any value from 11 to 20, two scans will be performed. A reading count from 21 to 30 gives you three scans, and so on.

If the reading count is set to infinity (INF), the scan will continuously repeat until you stop it.

NOTE As shown in Figure 7-2, two counters are used for SCAN operation. The Trigger counter controls the number of scans, and the Sample Counter controls the number of channels for each scan. The number of channels in the scan list and the programmed reading count automatically sets the Trigger Counter and the Sample Counter.
The Sample Count is equal to the scan list length. For example, if channels 101, 102, and 103 are programmed to be scanned, the Sample Count is 3.

## Output trigger

STEP operation - After each channel is scanned, an output trigger is applied to the rear panel Trigger Link connector.

SCAN operation - After all channels in the scan list are scanned, an output trigger is applied to the rear panel Trigger Link connector.

## 7751/7752/7753 module scanning

The Model 2790 can scan through the memory pattern locations for up to two installed Keithley Model 7751/7752/7753 modules. Each memory pattern can include source level, measurement function (DCV, $\Omega 2$, and $\Omega 4$ only), and channels to close.

NOTE Memory patterns can be set up only via remote. No front panel configuration is available. 7702 module channels can also be included in a memory pattern locations. See "Memory patterns" page 2-36 for complete details on setting up memory patterns. Once memory patterns are defined, they can be scanned by placing them in the scan list as covered below.

Readings for scanned memory pattern locations are automatically stored in the buffer. With buffer auto clear enabled (which is the default), the buffer clears when the scan is started. When disabled, scan readings are appended to the buffer. The TRACe:CLEar:AUTO <b> command is used to enable/disable buffer auto clear (Section 6).

## Memory pattern locations

A total of 40 memory pattern locations are available, M0 through M40. Each location can store source levels, measurement functions (DCV, $\Omega 2, \Omega 4$ functions only), math function, units, and channels to close when that memory location is scanned.

## Scanning memory pattern locations

Memory pattern locations are scanned in the order that they are listed in the scan list. For example, assume the following scan list:
(@M1, M4, M3, M5, M2, M6)
The above scan will run in this order: $\mathrm{M} 1>\mathrm{M} 4>\mathrm{M} 3>\mathrm{M} 5>\mathrm{M} 2>\mathrm{M} 6$.

## Scan configuration (7702 only)

A scan is configured from the scan configuration menu which is accessed by pressing SHIFT and then CONFIG. Figure 7-3 shows the basic flowchart to configure a scan. After entering the menu structure you can configure a simple scan, an advanced scan, or reset the configuration to the default setup for a simple scan. Refer to the flowchart in Figure 7-3 for the following discussions on "Scan reset," "Simple scan," and "Advanced scan."

NOTE Only a sequential scan can be configured from the front panel. For a sequential scan, the scan proceeds from the lowest numbered channel to the highest.

Non-sequential (backward) scanning is only intended to be performed using remote programming. Unexpected results may occur if a non-sequential scan is run from the front panel.

For more information, see "Scanning fundamentals - Sequential and nonsequential scans," page 7-3.

Figure 7-3
Scan configuration flowchart


NOTE The instrument is always configured to run a scan. On power-up, each available channel uses the power-on default setup. For example, for factory power-on default settings and a Model 7702 installed in slot 2 , the instrument will scan channels 201 through 240 when the scan is run. See Section 1 for details on power-on default settings.

There are two scan configurations: simple and advanced. When you configure the simple scan, the instrument uses the present instrument setup for each channel in the scan. For the advanced scan, each channel can have its own unique setup. As explained in "Trigger models" page 7-4, there is a user-set delay (auto or manual) that is in effect for both the simple and advanced scan.

## Channel setup considerations

Rel - In order to use an acquired rel value for an advanced scan channel, the rel value has to be acquired with the instrument in the normal measurement state. Details to set rel for scan channels are provided in "Relative" page 5-2. Scanning examples (front panel and remote programming) at the end of this section demonstrate how to set rel values for scan channels.

Filter - The moving filter cannot be used in a scan; only the repeat filter can be used. If you configure a channel (or channels) to use the moving filter, the filter will be off when the scan is run. See Section 4 for details on filter.

Hold - Reading hold cannot be used with scanning. Do not set up a scan channel to use hold and do not run a scan with hold enabled.

NOTE When in the scan setup menu, use the edit keys ( «, $\downarrow, \Delta$, and $\nabla$ ) to make selections and set values. Displayed selections and settings are entered by pressing the ENTER key.

## Saving the configured scan

The configured scan can be saved in a user-saved setup (SAV0, SAV1, SAV2, or SAV3). For a front panel configured scan, the reading count and timer values are also saved (B04 and later software). However, if the settings for a user setup or power-on setup do not match the switching module type presently installed, error +520 (Saved setup scancard mismatch) occurs when the setup is recalled. The scan resets to the factor default settings and all channels will open. The saved setup is still retained in memory and can be restored when the matching switching module is later installed.

The displayed front panel CONFIG menu operates differently from other menus when a saved front panel scan is recalled. The reading count value in the menu may not reflect the actual reading count of the scan. For example:
Assume a Model 7702 module configured for a 10-channel scan and a reading count of 30 . For this configuration, the instrument will scan through the scan list three times. Now assume the scan setup is saved in SAV1. After cycling power, select the SAV1 setup and press SCAN or STEP to run the scan. The scan will run properly. That is, the 10 channels will be scanned three times. However, if you check the reading count in the front panel CONFIG menu, the reading count will be 10 (instead of 30). This is because the scan list length "suggests" the reading count value of 10 during the setup process based on the length of the scan list.

NOTE Saving and recalling user-setups is covered in Section 1 (see "Defaults and user setups" on page 1-18).

## Scan reset

From the scan configuration menu, you can reset the scan configuration to the default setup for a simple scan.

For the Model 7702 switching module, channels 41 and 42 are turned off (not used) and channels 1 through 40 are configured as follows:

Function - DCV
Range - Auto
Rate - Slow
All other multimeter features and functions are disabled.

When the scan is run by pressing STEP or SCAN, channels 1 through 40 will be scanned and the 40 DCV readings will be stored in the buffer.

Perform the following steps to reset the scan configuration:

1. Press SHIFT and then CONFIG to enter the scan configuration menu.
2. Press the $\Delta$ or $\nabla$ key to display INT: RESET and press ENTER.

After briefly displaying "LIST RESET," the instrument returns to the normal measurement state.

## Simple scan

For a simple scan, you specify a starting channel (MIN CHAN) and an ending channel (MAX CHAN) for the scan. These settings determine the number of channels in the scan. For example, if you set MIN CHAN to 101 and MAX CHAN to 110, there will be 10 channels in the scan list.

The starting channel number must be lower than the ending channel number. If you enter an invalid value, the message "TOO SMALL" or "TOO LARGE" will be displayed briefly. The displayed channel number will default to the lowest available channel (i.e., 101) or the highest available channel (i.e., 240).

Perform the following steps to configure a simple scan:

1. While in the normal measurement mode, set up the instrument for your test. This setup will be used for all selected channels in the scan.
2. Press SHIFT and then CONFIG to access the scan setup menu.
3. Press the $\Delta$ or $\nabla$ key to display "INT: SIMPLE" and press ENTER.
4. Set the minimum channel (MIN CHAN) for the scan and press ENTER.
5. Set the maximum channel (MAX CHAN) for the scan and press ENTER.
6. Enable (YES) or disable (NO) the timer and press ENTER. See "STEP and SCAN keys" for details on timer operation.
7. If you enabled the timer, set the timer interval using the hour/minute/second format. The timer can be set from $0.001 \mathrm{sec}(00 \mathrm{H}: 00 \mathrm{M}: 00.001 \mathrm{~S})$ to $99 \mathrm{hrs}, 99 \mathrm{~min}$, $99.999 \sec (99 \mathrm{H}: 99 \mathrm{M}: 99.999 \mathrm{~S})$. Note that pressing the AUTO key sets the timer to 0.001 sec . With the desired interval displayed, press ENTER.
8. The displayed reading count (RDG CNT) sets the number of channels to scan (STEP) or the number of scans to run (SCAN). You can change the reading count to any finite value from 2 to 55000 or you can select infinite (continuous scanning). To select infinite, set the reading count to 000000 to display INF. See "Trigger models" page $7-4$, for details on reading count. With the desired reading count setting displayed, press ENTER to return to the normal measurement display state.

## Advanced scan

For an advanced scan, each enabled channel can have its own unique setup. Channels that are disabled are excluded from the scan list.

When you enter the channel setup menu, the displayed information indicates the present setup for the selected channel. The position of the decimal point in the "SETUP" message indicates present range. Examples:

S.ETUP	V:101	1V range for channel 101. If the AC annunciator is off, the function is DCV . If it is on, ACV is selected.
SE.TUP	$\mathrm{K} \Omega: 102$	$10 \mathrm{k} \Omega$ range for channel 102 . If the 4 -wire annunciator is off, the function is $\Omega 2$. If it is on, $\Omega 4$ is selected.
SET.UP	mA:121	100 mA range for channel 121 . If the AC annunciator is off, the function is DCI. If it is on, ACI is selected.
SETUP	${ }^{\circ} \mathrm{C}: 103$	TEMP function selected for channel 103.
SETUP	HZ:104	FREQ function selected for channel 104.
SETUP	S:105	PERIOD function selected for channel 105.
SETUP	PR:111	For the Model 7702, channel 121 is paired to channel 101 and cannot be changed. Channel pairing occurs when Ratio or Channel Average is enabled, or when a 4 -wire function ( $\Omega 4$ or 4 -wire RTD TEMP) is selected.

The annunciators indicate which of the other instrument settings are enabled for the selected channel. When you edit settings for the selected channel (auto range, rel, rate, etc.), the related annunciators will turn on/off.

## Advanced scan setup notes

1. The CHAN annunciator is on while in the scan setup menu.
2. For some channel-specific setups, you have to configure them from a menu. For example, to set up and enable $\mathrm{mX}+\mathrm{b}$, you have to use MATH menu. While in that menu, the CHAN annunciator will flash to indicate that you are editing the $\mathrm{mX}+\mathrm{b}$ math setup for that channel in the scan list. When you exit from the $\mathrm{mX}+\mathrm{b}$ setup menu, the CHAN annunciator stops flashing.
3. Paired channels - A paired channel function or operation can only be selected for a primary channel. For the Model 7702, channels 1 through 20 are the primary channels. Trying to select a paired channel function or operation for channels 21 through 42 will result in "INVALID CHAN."
4. Function changes - When you press a function key, the selected channel assumes the mainframe setup for that function. Also, available channels (for the specified slot) that follow will also assume that setup. Model 7702 example: If you press DCV for channel 101, channels 101 through 140 will assume the DCV setup. Note that channels for slot 2 are not affected.

When you press the $\Omega 4$ function key for a primary channel, the subsequently paired channels will be displayed briefly. Model 7702 example: If you press $\Omega 4$ for channel 108 , channels 109 through 120 will also assume the $\Omega 4$ function and the message "128-140 PRD" will be displayed to indicate the paired channels.

A channel that is paired to a primary channel is not affected by function changes. Model 7702 example: Assume channel 102 is paired to channel 122 . Now select channel 103 and press DCV. All following channels, except channel 122, will assume the DCV setup. Channel 122 remains paired to channel 102. However, if you select channel 101 and press DCV, channel 102 will change to DCV and not be paired to channel 122 anymore. Therefore all 40 channels will assume the DCV setup.
5. Setting changes - When you press a key to change a setting (i.e., range, rel, digits, etc.), only the selected scan channel is affected. Model 7702 example: If you make a range change for channel 103 , the range settings for other channels are not affected.

## Advanced scan setup procedure

## Step 1: Select the advanced scan configuration menu

1. Press SHIFT and then CONFIG to access the scan setup menu.
2. Press the $\Delta$ or $\nabla$ key to display INT: ADVANCED and press ENTER.

## Step 2: Edit scan channels

1. Use the $\downarrow$ or key to select channel 101:

SETUP V:101 (factory default)
NOTE The CLOSE key can instead be used to select a scan channel to be edited. Press CLOSE, use the $\triangle$ or $\nabla$ key to display the channel, and then press ENTER.
2. You can disable the channel or use it in the scan. Perform step a or step b:
a. If you do not want to use the channel, press SHIFT and then CH-OFF to disable the channel. Available channels that follow will also disable. Note, however, that channels for slot 2 are not affected.
b. If you want the channel in the scan, you can either use the presently selected function or select a valid measurement function. When you press a function key (i.e., DCV), the channel assumes the setup of the selected function. Available channels that follow will assume the same setup. Note, however, that channels for slot 2 are not affected.

NOTE For the Model 7702, DCI and ACI cannot be selected for channels 1 through 40. DCI and ACI are the only functions that can be set for channels 41 and 42.
3. If you did not disable the channel, make your setup changes (if any) for the selected function. These changes do not affect the following channels.
4. Using the $\downarrow$ or key or the CLOSE key to select the channel, repeat steps 2-2 and 2-3 to set other channels.
5. When finished setting up channels, press ENTER to proceed to set up triggering.

NOTE If there are not at least two channels in the scan list (two or more channels enabled), the message "INVALID LIST" will appear briefly. You will not be able to exit from the scan configure menu or finish the scan setup until you enable at least two channels.

NOTE The remaining steps are used to check or change the setups for triggering, timer, and reading count. If you are not going to make changes to any of those setups, you can exit from the scan setup menu by pressing EXIT twice. The instrument returns to the normal measurement mode.

## Step 3: Enable immediate scan

The present state of immediate scan (IMM SCAN) is displayed: Y (yes, which is the factory and *RST default) or N (no). With immediate scan enabled, the scan will start when you press the STEP or SCAN key. Use the $\Delta$ or $\nabla$ key to display IMM SCAN: Y and press ENTER.

NOTE Disable immediate scan (IMM SCAN: N) when you wish to use a monitored reading limit to trigger the start of the scan. This technique to start a scan is covered later in this section. See "Scan operation (7702 only)" page 7-21.

## Step 4: Timer controlled scan

The present state of the TIMER will be displayed: NO or YES. If you do not wish to use the timer, use the $\Delta$ or $\nabla$ key to display TIMER? NO (which is the factory and *RST default) and press ENTER.

To use the timer, use the $\Delta$ or $\nabla$ key to display TIMER? YES and press ENTER. The timer interval is displayed in the hour/minute/second format. The timer can be set from 0.001 sec (00H:00M:00.001S) to $99 \mathrm{hr}, 99 \mathrm{~min}, 99.999 \mathrm{sec}(99 \mathrm{H}: 99 \mathrm{M}: 99.999 \mathrm{~S})$. Note that pressing the AUTO key sets the timer to 0.001 sec . With the desired interval displayed, press ENTER.

## Step 5: Set the reading count

The displayed reading count (RDG CNT) sets the number of channels to scan (STEP) or the number of scans to run (SCAN). You can change the reading count to any finite value from 2 to 55000 or you can select infinite (continuous scanning). To select infinite, set the reading count to 00000 to display INF. With the desired reading count setting displayed, press ENTER. The instrument returns to the normal measurement mode.

See "Trigger models" page 7-4, for details on reading count.

## Setting delay

As shown in Figure 7-1 and Figure 7-2, a delay (auto or manual) can be set by the user. With auto delay selected, the delay period depends on function and range (Table 8-1). With manual delay selected, the delay period can be set from 0 secs to $99 \mathrm{hrs}, 99$ mins, 99.999 secs.

Perform the following steps to set auto or manual delay:

1. With the instrument in the normal measurement display state, press SHIFT and then DELAY.
2. Press $\Delta$ or $\nabla$ to display AUTO (auto delay) or MAN (manual delay) and press ENTER.
3. If you selected MAN, you will be prompted to set the delay in the hour/minute/ second time format. Use the $\langle, \Delta, \Delta$, and $\nabla$ keys to set the delay.

NOTE Pressing the AUTO key sets the manual delay to 0.001 sec.
4. With the desired manual delay displayed, press ENTER.

For remote programming, the TRIGer:DELay <NRf> and TRIGger:DELay:AUTO <b> commands are used to set the delay. See Table 7-1 for details.

NOTE The delay for ratio and channel average can only be set using remote programming (Table 5-3).

## Monitor channel

While in the normal measurement state, a scan list channel can be used to monitor readings. When a channel is selected to be the monitor, it will assume the setup of the scan list channel.

NOTE If you change the setup while a monitor channel is closed, that setup will be copied to that channel in the scan list.

When a scan is started, the first channel in the scan list will be briefly displayed. While the scan is in progress, the display will only show the reading(s) for the monitor channel. After the last channel is scanned, the scan will disable with the monitor channel closed.

Monitor can be used with limit testing to trigger the start of a scan. When the monitor detects that a set reading limit has been reached, the scan is triggered to start. The detailed procedure to perform a monitor scan is provided in "Scan operation (7702 only) — Monitor scan," page 7-37.

## NOTE An overflow reading ("OVRFLW" message displayed) is interpreted by the Model 2790 as a positive reading, even if the input signal is negative. This could inadvertently trigger a monitor scan (see "Scan operation (7702 only) — Monitor scan," page 7-37).

The monitor channel must be a channel that is in the scan list. If the monitor channel is removed from the scan list, the lowest channel in the scan list will become the monitor channel.

To set monitor, the instrument can be in the normal measurement state or enabled while in the advanced scan menu. There are two methods to select a monitor channel; method 1 selects it while a channel is closed and method 2 selects it with no channels closed.

NOTE The monitor channel must be a channel that is in the scan list.

## Method 1:

1. Use the CLOSE key or the $\boldsymbol{4}$ and keys to close the channel that you want to be the monitor.
2. Press SHIFT and then MONITOR (MON annunciator turns on).

## Method 2:

1. If a channel is closed, press OPEN to open it.
2. Press SHIFT and then MONITOR.
3. Use the $\downarrow, \Delta$, and $\nabla$ keys to display the monitor channel (i.e., MONITOR 101) and press ENTER. The monitor channel closes and the MON annunciator turns on.

To disable monitor, again press SHIFT and then MONITOR (MON annunciator turns off).
Once enabled, you can change the monitor channel using the CLOSE key or the $\boldsymbol{4}$ and
keys. If you open the monitor channel, the monitor does not disable but it does become inactive (MON annunciator turns off). When a channel is closed, monitor becomes active (MON annunciator turns on).

While in the normal measurement state, the present monitor channel dictates which channel in the scan list is the monitor. Therefore, if you change the monitor channel, the scan list monitor channel also changes.

When you change the monitor channel while in the normal measurement state, the instrument setup does not change. If you want the monitor channel to assume the setup of the scan list channel, you must disable the monitor and then re-enable it.

## Auto channel configuration

Auto channel configuration allows you to recall scan list setups. With auto channel configuration enabled, a closed channel assumes the scan list setup. With this feature, you can inspect the channel setups of the scan or manually scan channels. When a scan channel is disabled (not in scan list), it cannot be closed with auto channel configuration enabled.
As with normal operation, when you use $\boldsymbol{\downarrow}$, or CLOSE to close a channel (or channel pair), any other closed channels are first opened.
Perform the following steps to enable or disable auto channel configuration.

1. Press SHIFT and then SETUP.
2. Use the $\Delta$ or $\nabla$ key to display the auto configuration (CH AUTOCFG) setting: N (no) or Y (yes).
3. Press the key to place the cursor on the present setting ( N or Y ) and press the $\Delta$ or $\nabla$ key to change the setting.
4. Press ENTER to return to the normal measurement state.

NOTES Auto channel configuration cannot be enabled if there is a non-scan channel presently closed. For example, assume the scan list consists of channels 105 through 110 and channel 101 (a non-scan channel) is presently closed. When you attempt to enable auto channel configuration from the front panel, the message "NOT IN SCAN" is briefly displayed. For remote operation, error -221 (settings conflict) occurs.

With auto channel configuration enabled, the $\boldsymbol{\downarrow}$ and keys will not properly step through a non-sequential scan list. Therefore, auto channel configuration should not be used for a non-sequential scan list. For information on nonsequential scans, see "Scanning fundamentals - Sequential and non-sequential scans," page 7-3.

For remote operation, the ROUT:CLOS:ACON command is used to enable or disable auto channel configuration (Table 7-1).

## Saving setup

Up to four instrument setups can be saved in memory using the SHIFT $>$ SAVE menu (SAV0, SAV1, SAV2, or SAV3). A user-saved setup can be restored from the SHIFT > SETUP menu. Details on user-setups are covered in Section 1.

## Auto scan

When auto scan is enabled, the scan operation is saved in memory. If power to the Model 2790 is interrupted, the scan will resume when power is restored. With auto scan enabled, the last scan setup becomes the power-on setup. It takes precedence over the factory or *RST.

Perform the following steps to set auto scan.

1. While in the normal measurement state, press SHIFT and then SETUP.
2. Use the $\Delta$ and $\nabla$ keys to display the auto scan (AUTOSCAN) setting: N (no) or Y (yes).
3. To change the setting, press $\downarrow$ to place the cursor on the setting ( N or Y ) and press $\Delta$ or $\nabla$ to change the setting.
4. Press ENTER to exit from the menu structure.

NOTE If during the power-up sequence the Model 2790 detects a card ID change for any slot, auto scan configuration will disable and an interrupted scan will not be resumed. Error +517 occurs (cannot resume scan) to indicate that the scan has been disabled. The instrument assumes the normal power-on setup.

## Scan operation (7702 only)

A basic scan is controlled solely by the STEP and SCAN keys. When one of these keys is pressed, the STEP or SCAN operation will be performed. For the manual/external trigger scan, the TRIG key or triggers received from another instrument starts the STEP or SCAN operation. For the monitor scan, a channel monitors readings. When a set reading limit is reached, STEP or SCAN will start.

## Basic scan

Perform the following steps to run the presently configured scan:

1. To start the scan, press STEP or SCAN.
2. The STEP or SCAN annunciator turns on and channels are scanned from the lowest to highest number channel. Channels that are turned off will not be scanned.
3. Keep in mind that the Timer Delay for STEP occurs between channels, while the Timer Delay for SCAN occurs between scans. If the timer is off, both scans will run at virtually the same speed.
4. With reading count set to a finite value, the last channel scanned will open and the first channel in the scan list will close. Keep in mind that the scan is still enabled (STEP or SCAN annunciator on). When you press STEP or SCAN, the scan will continue starting with the next channel.
5. With reading count set to infinite, the scan will keep repeating.

NOTE While the scan is enabled (STEP or SCAN annunciator on), most front panel keys are inoperative and will cause the message "HALT SCANNER" to be displayed.
6. To disable the scan, press SHIFT and then HALT.

## Buffer

To recall scanned readings stored in the buffer, press RECALL and use the $\downarrow, \Delta$, and $\nabla$ keys to navigate through the buffer. Note that the buffer can be read while the instrument is storing readings. See Section 6 for details on recalling buffer readings. When finished, make sure to exit from buffer recall by pressing the EXIT key.

NOTE Channels for an advanced scan can be configured using different $m X+B$ units (i.e., ${ }^{\circ}$ and $\Omega$ ), temperature sensors (i.e., 4 -wire RTD and thermistor), and measurement type (i.e., OCOMP ohms and DCV).

However, when readings are recalled from the buffer, the display may not indicate the correct $m X+B$ units symbol or annunciator for each channel. For example, assume one channel used OCOMP ohms, while a second used $\Omega 2$. When the readings are recalled, the OCOMP annunciator may remain on for both channels.

This display anomaly is due to memory limitations. Preserving the $m X+B$ units and annunciators for each channel would reduce the number of readings that could be stored in the buffer.

## Manual/external trigger scan

The only difference between a manual/external trigger scan and the basic scan is control. The basic scan runs as soon as the STEP or SCAN key is pressed. The manual/external trigger scan is controlled by the front panel TRIG key or by triggers received from another instrument.

NOTE For the following procedure, the Model 2790 can be triggered by pressing the TRIG key or by receiving a trigger pulse from another instrument. Section 8 provides details on triggering.

1. If the scanner is presently enabled (STEP or SCAN annunciator on), press SHIFT and then HALT to disable it.
2. Press the EX TRIG to place the instrument in the external triggering mode. The TRIG annunciator turns on and the reading is blanked (-------).
3. Press STEP or SCAN to enable the scan (STEP or SCAN annunciator turns on).
4. The TRIG key or input triggers control the scan as follows:

STEP operation - In general, each time the Model 2790 is triggered, one channel is scanned. When the STEP key is pressed to enable the scan, the first channel in the scan list closes. When the first trigger occurs, a measurement is taken, the channel opens, and the next channel closes. This process continues for each channel in the scan. After the last channel in the scan list is scanned, the first channel in the scan list closes.
The reading count determines how many channel measurements will be performed during the scan sequence. If the reading count is greater than the scan list length, operation loops back to the beginning of the scan list and continues.
After a scan sequence (as determined by the reading count) is completed, the scan remains enabled (STEP annunciator on), but the Model 2790 goes into the idle state. If you wish to repeat the scan sequence, you will have to first take the Model 2790 out of idle. This can be done by pressing the STEP (or TRIG) key.
SCAN operation - In general, when the Model 2790 is triggered, a complete scan of all the channels in the scan list is performed. When the SCAN key is pressed to enable the scan, the first channel in the scan list closes. When a trigger occurs, one scan of the scan list channels is performed. After the last channel is scanned, the first channel in the scan list will close.
Reading count determines how many scans will be performed (see "Trigger models" page 7-4). If programmed for another scan, it will start when another trigger occurs.
After the last scan is completed, the scan remains enabled (SCAN annunciator on), but the Model 2790 goes into the idle state. If you wish to repeat the scans, you will have to first take the Model 2790 out of idle. This can be done by pressing the SCAN (or TRIG) key.
5. When finished, press SHIFT and then HALT to disable the scan and press EX TRIG to take the Model 2790 out of the external triggering mode.

## Monitor scan (analog trigger)

A channel can be assigned as a monitor channel. When the monitor channel detects that a reading limit has been reached, the scan will be triggered to start.

There are four reading limits that can be used to trigger the start of the scan: low limit 1 (LLIM1), high limit 1 (HLIM1), low limit 2 (LLIM2), and high limit 2 (HLIM2). The scan will start when any enabled reading limit event is detected by the monitor channel. Details on Limits are provided in Section 9.

NOTE An overflow reading ("OVRFLW" message displayed) is interpreted by the Model 2790 as a positive reading, even if the input signal is negative. This could inadvertently trigger a monitor scan. For example, assume the monitor channel is monitoring a negative input signal and the instrument is configured to trigger a monitor scan if a positive input signal is detected. If for some reason, the negative input signal exceeds the measurement range, the overflow reading will be interpreted as positive and trigger the start of the scan.

Perform the following steps to run a monitor scan:
NOTE The last enabled scan function (STEP or SCAN) will be used for the monitor scan.

1. Perform Step 1 and Step 2 of the "Advanced scan setup procedure" page 7-16, to set up scan channels. With the channel to be used as the monitor selected, set and enable limits as follows. Note that you only need to set values for limits that are going to be used.
a. Press SHIFT and then LIMITS to access the limits menu. Note that the CHAN annunciator flashes to indicate that the menu is being used to set up a scan channel.
b. Use the $\downarrow, \Delta$, and $\nabla$ keys to set high limit $1(\mathrm{HI} 1)$ and press ENTER.
c. Set low limit 1 (LO1) and press ENTER.
d. Set high limit 2 (HI2) and press ENTER.
e. Set low limit 2 (LO2) and press ENTER. The instrument returns to the scan setup menu.
f. Press SHIFT and then ON/OFF to display the present state of LIMITS (ON or OFF). Again, the CHAN annunciator flashes to indicate that the menu is for a scan channel.
g. Press the $\Delta$ or $\nabla$ key to display "LIMITS:ON" and press ENTER. The instrument returns to the scan setup menu. Note that the HIGH and LOW annunciators are on to indicate that limits are enabled.
After all scan channels are set up, press ENTER. The present state of IMM SCAN is Y (yes) or N (no).
2. Press the $\Delta$ or $\nabla$ key to display IMM SCAN: N and press ENTER.
a. Press the $\Delta$ or $\nabla$ key to enable or disable low limit 1 (LLIM1 SCAN:N/Y) and press ENTER.
b. Press the $\Delta$ or $\nabla$ key to enable or disable high limit 1 (HLIM1 SCAN:N/Y) and press ENTER.
c. Press the $\Delta$ or $\nabla$ key to enable or disable low limit 2 (LLIM2 SCAN:N/Y) and press ENTER.
d. Press the $\Delta$ or $\nabla$ key to enable or disable high limit 2 (HLIM2 SCAN:N/Y) and press ENTER.
3. Finish configuring the scan by performing Step 4 and Step 5 of the "Advanced scan setup procedure" page 7-16.

NOTE For a remote programmed monitor scan, use the ROUTe:MONitor:POINts command to specify the number of channels to scan (Table 7-1).
4. While in the normal measurement state, select and enable the monitor channel as explained in "Monitor channel," page 7-18.
When the reading limit for the monitor channel is reached, the scan will be triggered to start. When the monitor channel is scanned, the display will show the reading that triggered the scan.
If the reading limit event is still present on the monitor channel when the scan finishes, the scan will be triggered to run again. Note that the scan can also be run by pressing STEP or SCAN.
5. To disable the monitor scan, perform the following steps:
a. To disable monitor, press SHIFT and then MONITOR (MON annunciator turns off).
b. To disable limits, press SHIFT and then ON/OFF. Press $\Delta$ or $\nabla$ to display "LIMITS: OFF" and press ENTER.

## Remote programming - scanning

NOTE Scanning examples (remote programming and front panel operation) are provided at the end of this section.

## 7702 module scanning

## Trigger model

The trigger model for bus operation is shown in Figure 7-2. Bus operation is similar to front panel SCAN operation, with the following significant differences:

Idle - The instrument goes into the idle state (measurements halted) after the last scan channel is measured. For front panel operation, the instrument stays in idle until the next scan is started. For bus operation, the instrument will not stay in idle unless continuous initiation is disabled. There are two commands to disable continuous initiation:

```
INITitate:CONTinuous OFF ' Disable continuous initiation.
*RST ' Restore *RST defaults.
```

The instrument will remain in idle until it receives an initiate command. Typical commands to initiate one scan cycle include:

```
INITiate ' Initiate one scan cycle.
READ? ' Initiate one scan cycle and request "sample" readings.
```

More information on using these commands is provided by Reference $f$ that follows Table 7-1.

Control sources - For bus operation, there are two additional control sources: Bus and Manual. For the Bus control source, scan operation is controlled by bus triggers (i.e., *TRG) or by using the TRIG key. For the Manual control source, event detection is controlled solely by the TRIG key. Note that the instrument has to be in local in order to use the TRIG key. The LOCAL key takes the instrument out of remote.
Trigger and sample counters - For front panel SCAN operation, the number of channels in the scan list and the programmed reading count automatically sets the trigger and sample counters. For remote operation, these two counters are set by the TRIGGer:COUNt and SAMPle:COUNt commands.

NOTE To set sample count $>1$, continuous initiation must be disabled (see "Idle" page 7-7). Note that only sample count readings are stored in the buffer. See Section 8 for detailed information on the trigger model.

## Channel setup

The <clist> parameter is used to set up scan channels. For example, the following examples show how to set up scan channel 101:

```
FUNC 'VOLT', (@101) ' Set 101 for DCV.
VOLT:RANG 10, (@101) ' Set 101 for 10V range.
VOLT:DIG 4.5, (@101) ' Set }101\mathrm{ for 41/2 digit resolution.
VOLT:NPLC 3, (@101) ' Set }101\mathrm{ rate for 3 PLC.
```

NOTE In the above command sequence, channel 101 is first set for DCV before sending the other commands to set range, digits, and rate. If channel 101 was instead set to a different function (i.e., RESistance), the VOLT commands to set range, digits, and rate would generate error +700 (Invalid function in scanlist).

## Buffer

For front panel scanning, the reading count specifies the number of readings to store in the buffer. For remote scanning, the sample count specifies the number of readings to store in the buffer.

Readings stored in the buffer by the TRAC command (or by front panel data store operation) must be cleared before sending INITiate or READ? to take the instrument out of idle. The following command clears the buffer:

TRACe:CLEar ' Clear buffer.

## 7751/7752/7753 module scanning

NOTE See "Memory patterns" page 2-36 for complete details on setting up memory patterns. Once memory patterns are defined, they can be scanned by placing them in the scan list as covered below.

## Trigger model

The trigger model for memory pattern operation is shown in Figure 7-4. Operation is similar to 7702 scan operation, with the following significant differences:
Channel closure - Instead of a single channel closure, you can close multiple channels with a single memory pattern definition.
Source levels - Source levels can be set by defining them in the memory location definition.
Measurements - Optionally, a DCV, $\Omega 2$, or $\Omega 4$ measurement function can be set up for each memory location. You must set up at least one location for a measurement.

## Scan setup

The <clist> parameter is used to set memory pattern locations. For example, the following example sets up a scan through M1, M2, and M3:

```
ROUT:SCAN (@M1, M2, M3) ' Scan M1 to M3.
```

Figure 7-4
Trigger model (memory pattern scanning)


## Scanning commands

Scanning commands are listed in Table 7-1. Additional information on these commands follow the table.

$$
\begin{array}{ll}
\text { NOTE } \quad \text { Memory pattern commands, queries, and optional command words are not } \\
\text { included in Table 7-1. The unabridged SCPI tables are provided in Section } 15 . \\
& \text { Memory pattern commands are listed in Table 2-4 and in Table 15-4. }
\end{array}
$$

Table 7-1

## Scanning commands

Commands	Description	Default	Ref
Scan commands			
ROUTe:SCAN <clist>	Specify list of channels to be scanned.		a
ROUTe:SCAN?	Returns list of channels to be scanned.		
ROUTe:SCAN:TSOurce <list>	Select trigger(s) to start scan: <list> = IMMediate, or HLIMit1, LLIMit1, HLIMit2, LLIMit2.	IMM	b
ROUTe:SCAN:NVOLatile <b>	Enable or disable auto scan; b$\rangle>=\mathrm{ON}$ or OFF.	(Note 1)	
ROUTe:SCAN:LSELect <name>	Enable/disable scan; <name> = INTernal (on) or NONE (off).	NONE	
ROUTe:MONitor <clist>	Specify one channel to be monitored.		c
ROUTe:MONitor:POINts <NRf>	Specify number of channels to scan; $\langle\mathrm{NRf}\rangle=2$ to 55000.	(Note 3)	d
ROUTe:MONitor:STATe <b>	Enable/disable monitor; <b> = ON or OFF.	OFF	
ROUTe:MONitor:DATA?	Returns the most recent monitor reading.		
ROUTe:CLOSe:ACONfigure <b> Limits commands	Enable or disable auto channel configuration.		
CALCulate3:LIMit1:UPPer <n>	Set high limit 1 for monitor; <n>=-4294967295 to +4294967295.	1.0	
CALCulate3:LIMit1:LOWer <n>	Set low limit 1 for monitor; $\langle\mathrm{n}>=-4294967295$ to +4294967295.	-1.0	
CALCulate3:LIMit2:UPPer <n>	Set high limit 2 for monitor; $\langle\mathrm{n}\rangle=-4294967295$ to +4294967295.	2.0	
CALCulate3:LIMit2:LOWer <n>	Set low limit 2 for monitor; $\langle\mathrm{n}\rangle=-4294967295$ to +4294967295.	-2.0	
CALCulate3:LIMit1:STATe <b>	Enable/disable limit 1 test; <b> = ON or OFF.	OFF	
CALCulate3:LIMit2:STATe <b>	Enable/disable limit 2 test; <b> = ON or OFF.	OFF	

Table 7-1 (cont.)
Scanning commands

Commands	Description	Default	Ref
Trigger commands   TRIGger:SOURce <name>   TRIGger:TIMer < n> TRIGger:COUNt <NRf> TRIGger:DELay <n> TRIGger:DELay:AUTO <b> SAMPle:COUNt <NRf> SAMPle:COUNt?   INITiate:CONTinuous <b> INITiate READ?   Buffer commands   TRACe:DATA?   TRACe:CLEar	Select control source; <name> = IMMediate, TIMer,   MANual, BUS, or EXTernal.   Set timer interval in sec; <n> = 0.001 to 999999.999.   Set trigger count; <NRf> = 1 to 55000, or INFinity.   Set delay in sec; <n> = 0 to 999999.999.   Enable/disable auto delay; <b> = ON or OFF.   Set sample count; <NRf> = 1 to 55000 .   Query sample count.   Enable/disable continuous initiation; $\langle\mathrm{b}\rangle=\mathrm{ON}$ or OFF.   Initiate one scan cycle.   Initiate one scan cycle and request sample readings.   Read buffer readings.   Clear buffer.	$\begin{aligned} & \text { IMM } \\ & \\ & 0.1 \\ & (\text { Note } 2) \\ & 0 \\ & \text { ON } \\ & 1 \end{aligned}$	e
$\begin{array}{\|r} \text { Channel list parameter (7702) } \\ \text { <clist> = (@SCH) } \\ \text { where: } \quad=\text { Mainfram } \\ \text { CH }=\text { Switching } \\ \text { Examples: } \quad(@ 101)=\text { Sld } \\ \\ \\ \\ (@ 101,203) \\ \\ (@ 101: 110) \end{array}$   Channel list parameter (7751/7 <clist> = (@Mn)   where: $\mathrm{M}=$ Memory p   n = Memory   Examples: $\quad(@ M 1)=$ M   $(@ M 3)=\mathrm{M}$	number (1 or 2)   ule channel number (must be 2 digits) Channel 1   1, Channel 1 and Slot 2, Channel 3   1, Channels 1 through 10   7753 using memory patterns):   command   n number ( 1 to 40)   location \#1   location \#3		

Notes:

1. Not affected by *RST and SYSTem:PRESet. Front panel factory default is OFF.
2. *RST sets count to 1 and SYSTem:PRESet sets count to INFinity.
3. The default value depends on which switching module is installed.

## Reference

a. ROUTe:SCAN <clist> - Channels or memory pattern locations will be scanned in the order that they are listed. The following example shows the proper format for specifying channels in a scan list for a sequential scan:

```
ROUT:SCAN (@101:110,201,204,206)
```

For the above scan list, the scan will run starting with the lowest numbered channel (101) and then sequence up (forward) to the highest numbered channel (206).

The following example shows the proper format for specifying memory pattern locations for a scan:

ROUT:SCAN (@M1, M4, M3)
For the above scan list, the scan will scan through locations in order (M1, M4, M3).
Remote programming can also be used to run non-sequential scans. Any scan list configured to scan backward is considered a non-sequential scan. The following examples configure non-sequential scan lists:

Example 1) ROUT:SCAN ( $0101: 105,103,106: 110$ )
Example 2) ROUT:SCAN (@110:101)
Example 1 - After channel 105 is scanned, the unit backs up to scan channel 103, then proceeds forward to scan channels 106 through 110.
Example 2 - The scan starts with channel 110, then proceeds backward to channel 101.

NOTES Non-sequential scanning is only intended to be performed using remote programming. Unexpected results may occur if a non-sequential scan is run from the front panel.

There must be at least two channels in the scan list. Creating a scan list that has only one channel will generate error -221 (settings conflict).

## Effects of function changes on the scan list

NOTE To avoid unexpected problems with scans (as explained after this note), it is recommended that the scan list (ROUT:SCAN) be created AFTER scan channel functions are selected (SENS:FUNC).

Changing from a 2 -wire function to a 4 -wire function will change the scan list. This is demonstrated as follows:

The following commands show the proper sequence to configure a simple 20-channel DCV scan using a Model 7702 installed in slot 1:

```
SENS:FUNC 'VOLT',(@101:120) ' Set channels for DCV.
ROUT:SCAN (@101:120) ' Specify scan list.
```

When the scan is changed to a 4 -wire function, the scan list will change. For example, assume the above scan is changed to the $\Omega 4$ function as follows:

SENS:FUNC 'FRES', (@101:110)
For the 4 -wire resistance function, channels 101 through 110 will be paired to channels 121 through 130. ROUT:SCAN? returns the following scan list:
(@101:110)
Now assume the scan is returned to DCV function as follows:
SENS:FUNC 'VOLT',(@101:120)
The above command sets channels 101 through 120 for DCV. However, it will NOT affect the scan list. ROUT:SCAN? still returns a 10 channel scan list:
( @101:110)
The following command will set the scan list for 20 channels:
ROUT:SCAN (@101:120)
b. ROUTe:SCAN:TSOurce <list>
<list> = IMMediate
= HLIMit1, HLIMit2, LLIMit1, LLIMit2
As with front panel operation, the scan can start immediately when it is enabled and triggered OR it can be started by a reached reading limit detected by the monitor channel. For immediate, the IMMediate command must be the only parameter in the list. To use reading limits, each limit must be separated by a comma (,).
Examples:
ROUT:SCAN:TSO IMM ' Start scan when it is enabled and triggered.
ROUT:SCAN:TSO HLIM1,LLIM1 ' Enable high limits 1 and low limits 1. Note that any reached limit will start the scan.
c. ROUTe:MONitor <clist>- The channel that you specify as the monitor must be a channel that is in the scan list. If it is not, the first channel in the scan list will automatically become the monitor channel.
If the <clist> has more than one channel, error -223 (too much data) occurs and the command is not executed.
d. ROUTe:MONitor:POINts — Use this command to specify the number of channels to scan each time the monitor scan is triggered to start. For example, assume the monitor scan list has 10 channels. To scan that list once, send ROUT:MON:POIN 10. To scan that list twice, use parameter value 20 . For three scans, send parameter value 30 , and so on.
e. SAMPle:COUNt and TRIGger:COUNt - Sample count specifies the number of readings to scan and store in the buffer, while the trigger count specifies the number of scans to perform.
If the sample count is greater than the number of channels in the scan list (scan list length), operation wraps around to the beginning of the scan list and continues. For example, assume the scan list is made up of channels 101,102 , and 103 , and the sample count is set to 4 . After channels 101, 102, and 103 are scanned, operation loops around to scan channel 101 again. The first and last readings in the buffer will be channel 101.
When performing multiple scans (trigger count $>1$ ), sample readings overwrite the readings stored for the previous scan.

Continuous initiation must be disabled in order to set the sample counter $>1$ (see Reference c).
f. INITiate:CONTinuous, INITiate, and READ? - In order to initiate a single scan cycle using INITiate or READ?, continuous initiation must be disabled. If you send INIT or READ? with continuous initiation enabled, error -213 (Init ignored) will occur.
You cannot use READ? or INITiate if sample count $>1$ AND there are readings stored in the buffer by the TRAC command or by front panel data store operation (error -225, out of memory). Either set the sample count to one or clear the buffer (TRACe:CLEar).

## Scanning programming example

The following program will scan 10 channels (101 through 110):

```
TRAC:CLE ' Clear buffer.
INIT:CONT OFF ' Disable continuous initiation.
TRIG:SOUR IMM ' Select the immediate control source.
TRIG:COUN 1 ' Set to perform one scan.
SAMP:COUN 10 ' Set to scan 10 channels.
ROUT:SCAN (@101:110) ' Set scan list channels; 101 through 110.
ROUT:SCAN:TSO IMM ' Start scan when enabled and triggered.
ROUT:SCAN:LSEL INT ' Enable scan.
READ? ' Trigger scan and request the readings.
```


## Scanning examples

The following scanning examples assume that the Model 7702 switching module is installed in slot 1 of the mainframe.

NOTE A detailed example for 7751/7752/7753 memory pattern scanning is located in Section 2. See "Memory patterns" page 2-36.

Tables are used for the procedure steps to configure and run scan examples. The left side of the table provides the front panel procedure, while the right side shows the equivalent remote programming commands. Where appropriate, menu sequences are provided to summarize a front panel operation or selection. For example:

## SHIFT SETUP > RESTORE: FACT

For the above menu sequence, press SHIFT and then SETUP to access the menu, use the edit keys $(\longleftarrow,>, \Delta$, and $\nabla)$ to display RESTORE: FACT and then press ENTER to select it.

## External trigger scan

For this example, an external instrument is used to trigger the start of the 2-channel scan. Trigger pulse requirements and trigger cable connections are covered in Section 8.

NOTE For this example, the front panel TRIG key can be used in place of an external input trigger. Each time the TRIG key is pressed, the 2-channel scan will run.

One channel (101) measures temperature and the other channel (102) measures resistance. The two readings are stored in the buffer. Each time the scan is run, the two readings will be appended (added) to the buffer.

A thermistor is used to measure temperature. The thermistor is connected directly to the screw terminals of the switching module.

## Operation

A simplified model of external trigger scan operation is shown in Figure 7-5, while the procedure steps and programming commands are listed in Table 7-2.

As shown in the operation model, when the scan is enabled, channel 101 closes and the Model 2790 waits for an external trigger. When the trigger is received, channels 101 and 102 are measured. Operation then returns to the control source where it waits for another trigger.

NOTE After the scan is enabled (Table 7-2, step 5), the TRIG key can be used to trigger the scan.

Figure 7-5
External trigger scan example


Table 7-2
External trigger scan example

	Front panel operation	Remote programming
1	Restore defaults:   Restore defaults (SHIFT SETUP > RESTORE: FACT).	*RST
2	For front panel operation, proceed to step 3.   For remote programming, clear buffer and disable buffer auto clear.	TRAC: CLE   TRAC:CLE:AUTO OFF
3	Configure advanced scan:   (SHIFT CONFIG > ADVANCED):	
a	Channel 101:   Select TEMP function.   Configure temperature (SHIFT SENSOR): Select thermistor sensor (SENS: THRMSTR). Select thermistor type (TYPE: 5000 2 ).	FUNC 'TEMP',(@101) TEMP:TRAN THER,(@101) TEMP:THER 5000,(@101)
b	Channel 102:   Select $\Omega 2$ function.   Select $1 \mathrm{M} \Omega$ range.	FUNC 'RES',(@102)   RES:RANG 1e6,(@102)
c	Disable (off) channels 103 through 142 (SHIFT CH-OFF).	ROUT: SCAN (0101,102)
d	Enable immediate scan (IMM SCAN: Y).   Disable timer (TIMER? NO).	ROUT:SCAN:TSO IMM
f	Set reading count to infinity (RDG CNT: INF).	TRIG: COUN INF   SAMP:COUN 2
4	Select external trigger control source: Press EX TRIG.	TRIG:SOUR EXT
5	Enable scan:   Press SCAN.	ROUT:SCAN:LSEL INT INIT

## Monitor scan

For this example, channel 101 of the Model 7702 is used to monitor temperature. When the temperature reading reaches $30^{\circ} \mathrm{C}$, it will start the scan. For this 4 -channel scan, channel 101 measures temperature, while channels 102, 103, and 104 measure DCV.
This example uses the channel average feature to measure temperature. With channel average enabled, two temperature measurements will be taken; one at channel 101 and another at its paired channel (121). The two measured readings are then averaged to yield a single reading. It is this averaged temperature reading that will start the scan when it reaches $30^{\circ} \mathrm{C}$. Refer to Section 5 for details on channel average.

Two $5000 \Omega$ thermistors are used to measure temperature. The thermistors are connected directly to the screw terminals of the switching module.

## Operation

A simplified model of monitor scan operation is shown in Figure 7-6, while the procedure steps and programming commands are listed in Table 7-3.
In Figure 7-6, notice that there are two modes of operation. While in the monitor mode, the Model 2790 continuously performs temperature measurements. Keep in mind that channel average is being used. Therefore each temperature reading is the average of two temperature measurements (one on channel 101 and one on channel 121). As long as the average temperature reading remains below $30^{\circ} \mathrm{C}$, the instrument will remain in the monitor mode.

When the temperature reading reaches $30^{\circ} \mathrm{C}$, the Model 2790 switches over to the scan mode. Figuratively speaking, it is as if a "finger" presses the SCAN key when the monitor detects that the average temperature is at or above $30^{\circ} \mathrm{C}$.

The instrument is configured to scan four channels. The monitor TEMP channel reading and three DCV channel readings are stored in the buffer. After the fourth channel is measured, operation returns to the monitor mode to again measure temperature. Note that if the average temperature is still at or above $30^{\circ} \mathrm{C}$, the "finger" will again press SCAN to start the scan.

Figure 7-6

## Monitor scan example

## Monitor Mode:



Scan Mode:


Table 7-3

## Monitor scan example

	Front panel operation	Remote programming
1	Restore defaults (SHIFT SETUP > RESTORE: FACT).	SYST: PRES
2	For front panel operation, proceed to step 3. For remote programming, clear the buffer.	TRAC: CLE
a	Configure advanced scan:   SHIFT CONFIG > ADVANCED:   Channel 101:	
	Select TEMP function.   Configure temperature (SHIFT SENSOR):   Select thermistor sensor (SENS: THRMSTR). Select thermistor type (TYPE: 5000 ${ }^{\text {) }}$.	```FUNC 'TEMP',(@101)```
b	Set and enable high limit 1 :   Set limit to 30 (SHIFT LIMITS > HI1:+30.00000).   Enable (on) limit (SHIFT OFF/ON > LIMITS: ON).   Enable Channel Average (SHIFT CH AVG).   Close channel 1.	```CALC3:LIM1:UPP 30,(0101) CALC3:LIM1:STAT ON,(@101) CAV ON,(@101) ROUT:CLOS (@101)```
c	Channel 102, 103, and 104:   Select DCV function.   Select 10V range.   Set filter count to 20 (SHIFT TYPE > 020 RDGS). Enable filter (FILTER).	```FUNC 'VOLT',(@102:104) VOLT:RANG 10,(@102:104) VOLT:AVER:COUN 20,(@102:104) VOLT:AVER:STAT ON,(@102:104)```
d	Disable (off) channels 105 through 222   (SHIFT CH OFF).	ROUT: SCAN (@101:104)
e	Disable immediate scan (IMM SCAN: N) and enable high limit 1 (HLIM1 SCAN:Y).	ROUT:SCAN:TSO HLIM1
f	Disable timer (TIMER? NO).	
g	Set reading count to 4 .	ROUT: MON: POIN 4
4	Select and enable monitor channel (SHIFT MONITOR >101).	ROUT:MON (@101)   ROUT:MON:STAT ON

- Trigger model - Explains the various components of the front panel trigger model, which controls the triggering operations of the instrument.
- Reading hold (autosettle) - Explains the Reading Hold feature which is used to screen out readings that are not within a specified reading window.
- External triggering - Explains external triggering which allows the Model 2790 to trigger and be triggered by other instruments.
- Remote programming - triggering - Covers remote operation for triggering, including the GPIB trigger model and the commands.


## Trigger model

The flow chart in Figure 8-1 summarizes triggering as viewed from the front panel. It is called a trigger model because it is modeled after the SCPI commands used to control triggering.

NOTE For scanning using the 7702 module, the trigger model has additional control blocks, such as a Timer. These are described in Section 7 (Figure 7-1 and Figure 7-2). The complete trigger model, which is based on bus operation, is shown and discussed in "Remote programming - triggering," page 8-14.

Figure 8-1
Front panel trigger model (without scanning)


When not scanning and in the continuous trigger mode (factory default setup), the instrument will not stay in idle. Operation will continuously fall through the idle state and proceed to the Event Detection block of the trigger model. When in the one-shot trigger mode (*RST default setup), the TRIG key must be pressed to take the instrument out of idle. After each measurement, the instrument returns to idle and requires the TRIG key to be pressed to continue. The FACT (factory) default setup or *RST default setup is selected from the SHIFT > SETUP menu (see "Defaults and user setups," page 1-18).

When scanning using the 7702 module, the unit is considered idle at the end of a scan operation when the reading for the last channel remains displayed. To restore triggers, press SHIFT and then HALT. See Section 7 for details on scanning.

## Control source and event detection

The control source holds up operation until the programmed event occurs and is detected. The control sources are described as follows:

- Immediate - With this control source, event detection is immediately satisfied allowing operation to continue.
- External - Event detection is satisfied for any of the following three conditions:
- An input trigger via the Trigger Link line EXT TRIG is received.
- The front panel TRIG key is pressed. (The Model 2790 must be taken out of remote before it will respond to the TRIG key. Use the LOCAL key or send GTL over the bus.)
- Trigger command (*TRG or GET) is received over the bus.


## Delay (auto or manual)

A programmable delay is available after event detection. It can be set manually or an auto delay can be used. With auto delay selected, the instrument automatically selects a delay period that will provide sufficient settling for function and autorange changes and multiphase measurements.

Normal measurement state - With auto delay selected and the External or Bus control source selected, the Model 2790 selects a delay based on the selected voltage range. The auto delay period cannot be adjusted by the user. The auto delays are listed in Table 8-1. With one of the other control sources selected, the auto delay is 0.000 s for all functions and ranges.

7702 Scanning - When scanning, the nominal delay will be long enough to allow each switching module channel relay to settle before making the measurement. When scanning, the auto delay times in Table 8-1 are valid for all control sources.

Table 8-1
Auto delay settings

Function	Range and delay						
DCV	$100 \mathrm{mV}$ $1 \mathrm{~ms}$	$\begin{aligned} & 1 \mathrm{~V} \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline 100 \mathrm{~V} \\ & 5 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline 1000 \mathrm{~V} \\ & 5 \mathrm{~ms} \end{aligned}$		
ACV	$\begin{aligned} & 100 \mathrm{mV} \\ & 400 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~V} \\ & 400 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 400 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~V} \\ & 400 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 750 \mathrm{~V} \\ & 400 \mathrm{~ms} \end{aligned}$		
FREQ and PERIOD	$\begin{aligned} & 100 \mathrm{mV} \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~V} \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~V} \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 750 \mathrm{~V} \\ & 1 \mathrm{~ms} \end{aligned}$		
DCI	$\begin{aligned} & 20 \mathrm{~mA} \\ & 2 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~mA} \\ & 2 \mathrm{~ms} \end{aligned}$	$\begin{array}{\|l\|l} 1 \mathrm{~A} \\ 2 \mathrm{~ms} \end{array}$	$\begin{array}{\|l\|} 3 \mathrm{~A} \\ 2 \mathrm{~ms} \end{array}$			
ACI			1A 400 ms	3A 400ms			
$\Omega 2, \Omega 4$	$100 \Omega$	$\begin{array}{\|l} 1 \mathrm{k} \Omega \\ 3 \mathrm{~ms} \end{array}$	$\begin{aligned} & 10 \mathrm{k} \Omega \\ & 13 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \mathrm{k} \Omega \\ & 25 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \Omega \\ & 100 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 10 \mathrm{M} \Omega \\ & 150 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 100 \mathrm{M} \Omega \\ & 250 \mathrm{~ms} \end{aligned}$
Continuity		$\begin{array}{\|l} 1 \mathrm{k} \Omega \\ 3 \mathrm{~ms} \end{array}$					
TEMP	Auto delay period is the same as the delay for the resistance range that is used for the measurement.						

The delay function is accessed by pressing SHIFT and then DELAY. The present delay setting (AUTO or MANual) is displayed. Press the $\Delta$ or $\nabla$ key to display the desired setting and press ENTER.

If MANual is chosen, also enter the duration of the delay in the hour/minute/second format using the $\downarrow, \Delta$, and $\nabla$ keys. The maximum is $99 \mathrm{H}: 99 \mathrm{M}: 99.999 \mathrm{~S}$.. Note that pressing the AUTO key sets the delay to 0.001 sec . Press ENTER to accept the delay or EXIT for no change.

## Device action

The primary device action is a measurement. However, the device action block could include the following additional actions (Figure 8-2):

Figure 8-2
Device action


- Filtering - If the repeating filter is enabled, the instrument samples the specified number of reading conversions to yield a single, filtered reading. Only one reading conversion is performed if the filter is disabled or after the specified number of reading conversions for a moving average filter is reached. After a reading ( Rdg ) is procured, operation proceeds to Hold.
- Hold - The Hold feature is used to screen out reading anomalies. When enabled, the user selects a window and count for Hold. In general, when a reading is outside the window it is rejected and operation loops back to the beginning of the Device Action in (Figure 8-2). The hold count specifies how many readings have to be within the window before it is accepted. See "Reading hold (autosettle)," page 8-6, for operation details. After a Hold Reading is acquired, operation proceeds to Channel Closure.
- Channel Closure - When scanning using a 7702 module, the last device action is channel control. Using the hold feature provides an autosettling time for switching relays. Each open/close transition will restart the hold process and a reading for each channel will not occur until the relay settles.


## Output trigger

After the device action, an output trigger occurs and is available at the rear panel Trigger Link connector. This trigger can be used to trigger another instrument to perform an operation (e.g., select the next channel for an external scan).

## Reading hold (autosettle)

With hold enabled (HOLD annunciator on), the first processed reading becomes the "seed" reading and operation loops back within the device action block. After the next reading is processed, it is checked to see if it is within the selected hold window $(0.01 \%$, $0.1 \%, 1 \%$, or $10 \%$ ) of the "seed" reading. If the reading is within the window, operation again loops back within the device action block. This looping continues until the specified number (2 to 100) of consecutive readings are within the window. If one of the readings is not within the window, the instrument acquires a new "seed" reading and the hold process continues.

When a hold reading is acquired, an audible beep is sounded (if enabled) and the reading is considered a "true measurement." The reading is held on the display until an "out of window" reading occurs to restart the hold process.

For remote operation, the hold process seeks a new "seed" once it has been satisfied and the reading has been released. For basic front panel operation, the hold process does not seek a new "seed" until the held condition is removed.

NOTE Hold cannot be used when scanning (7702).

## Hold example

1. Press SHIFT and then HOLD to display the present window $(0.01 \%, 0.1 \%, 1 \%$, or $10 \%$ ).
2. To change the window, press the $\Delta$ or $\nabla$ key to display the desired window.
3. Press ENTER. The present hold count is displayed (2 to 100).
4. To change the hold count, use the $\downarrow, \downarrow, \Delta$, and $\nabla$ keys to display the desired count.
5. Press DCV to measure DC voltage.
6. Apply the test signal to the input of the Model 2790. Once the signal becomes stable enough to satisfy the hold condition, the reading is released and the beeper sounds (if enabled).
7. Remove the hold condition by disconnecting the signal from the input. Hold will then seek a new "seed."
8. To disable HOLD, press SHIFT and then HOLD.

## Beeper control

The beeper for Hold can be enabled or disabled from the OUTPUT menu as follows:

1. Press SHIFT and then OUTPUT.
2. Use the $\Delta$ or $\nabla$ key to display the present beeper (BEEP) state: NEVER, OUTSIDE, or INSIDE.
3. Perform step a or b :
a. To enable the beeper, use the $\Delta$ or $\nabla$ key to display OUTSIDE or INSIDE.
b. To disable the beeper, use the $\Delta$ or $\nabla$ key to display NEVER.
4. Press ENTER. The instrument returns to the normal display state and measurement state.

## External triggering

The EX TRIG key selects triggering from three external sources: trigger link, digital I/O, and the TRIG key. When EX TRIG is pressed, the TRIG annunciator lights and dashes are displayed to indicate the instrument is waiting for an external trigger. From the front panel, press the TRIG key to trigger a single reading. Pressing the EX TRIG key again toggles back to continuous triggers.

The Model 2790 uses two lines of the TRIG LINK rear panel connector as External Trigger (EXT TRIG) input and Voltmeter Complete (VMC) output. The EXT TRIG line allows the Model 2790 to be triggered by other instruments. The VMC line allows the Model 2790 to trigger other instruments.

Line 1 is configured as VMC and line 2 as EXT TRIG. The connector pinout is shown in Figure 8-3.

Figure 8-3
TRIG LINK pinout


## Digital I/O

Pin 6 (Ext Trig) of the Digital I/O can also be used as the external trigger input for the Model 2790. Line 2 of the TRIG LINK is physically connected to pin 6 of the Digital I/O connector.

The Digital I/O has a hardware interlock line (pin 8) that allows the use of an external circuit to control input triggers. When that line is left open or pulled high $(+5 \mathrm{~V})$, input triggers are enabled. When pulled low to 0 V , input triggers are disabled. When disabled, the Model 2790 will not respond to an input trigger.

Details on the Digital I/O are provided in Section 9.

## External trigger

The EXT TRIG input requires a falling-edge, TTL-compatible pulse with the specifications shown in Figure 8-4. In general, external triggers can be used to control measure operations. For the Model 2790 to respond to external triggers, the trigger model must be configured for it.

Figure 8-4
Trigger link input pulse specifications (EXT TRIG)


## Voltmeter complete

The VMC output provides a TTL-compatible output pulse that can be used to trigger other instruments. The specifications for this trigger pulse are shown in Figure 8-5. Typically, you would want the Model 2790 to output a trigger after the settling time of each measurement.

Figure 8-5
Trigger link output pulse specifications (VMC)


## External triggering example

For a test system that requires a large number of switching channels, the Model 2790 can be used with external scanners such as the Keithley Models 7001 and 7002. For example, 10 Model 7011s installed in the Model 7002 can provide up to 400 2-pole channels, as shown in Figure 8-6.

Figure 8-6

## DUT test system



The Trigger Link connections for this test system are shown in Figure 8-7. Trigger Link of the Model 2790 is connected to Trigger Link (either IN or OUT) of the Model 7002. Note that with the default trigger settings on the Model 7002, line \#1 is an input and line \#2 is an output. This complements the trigger lines on the Model 2790.
For this example, the Models 2790 and 7002 are configured as follows:

## Model 2790

Factory defaults restored (accessed from SHIFT-SETUP)
External triggers (accessed from EX TRIG)
Buffer enabled and set to store 400 readings

## Model 7002

Factory defaults restored
Scan list $=1!1-1!400$
Number of scans $=1$
Channel spacing $=$ TrigLink
Figure 8-7
Trigger link connections


1. Press EX TRIG to place the Model 2790 in the external trigger mode.
2. Press STEP on the Model 7002 to take it out of idle and start the scan. The scanner's output pulse triggers the Model 2790 to take a reading, store it, and send a trigger pulse. The following explanation on operation is referenced to the operation model shown in Figure 8-8.

Figure 8-8
Operation model for triggering example

A. Pressing EX TRIG on the Model 2790 places it at point A in the flowchart, where it is waiting for an external trigger.
B. Pressing STEP on the Model 7002 takes it out of the idle state and places operation at point B in the flow chart.
C. For the first pass through the model, the scanner does not wait at point B for a trigger. Instead, it closes the first channel.
D. After the relay settles, the Model 7002 outputs a Channel Ready pulse. Since the instrument is programmed to scan 400 channels, operation loops back up to point B , where it waits for an input trigger.
E \& F. Model 2790 operation is at point A waiting for a trigger. The output Channel Ready pulse from the Model 7002 triggers the Model 2790 to measure DUT \#1 (point E). After the measurement is complete, the Model 2790 outputs a completion pulse (point F ) and then loops back to point A where it waits for another input trigger.
The trigger applied to the Model 7002 from the Model 2790 closes the next channel in the scan. This triggers the Model 2790 to measure the next DUT. The process continues until all 400 channels are scanned, measured, and stored in the buffer.

## External triggering with BNC connections

An adapter cable is available to connect the micro-DIN Trigger Link of the Model 2790 to instruments with BNC trigger connections. The Model 8503 DIN to BNC Trigger Cable has a micro-DIN connector at one end and two BNC connectors at the other end. The BNC cables are labeled VMC (trigger line 1) and EXT TRIG (trigger line 2).

Figure 8-9 shows how a Keithley Model 220 Current Source can be connected to the Trigger Link of the Model 2790 using the adapter cable. When used with the STEP mode of the Model 220, you can perform synchronized source-measure operations without the use of a computer. Whenever the Model 220 receives a trigger from the Model 2790, it will step to the next current source value.

Figure 8-9
DIN to BNC trigger cable


## Remote programming — triggering

## Trigger model (remote operation)

The following paragraphs describe how the Model 2790 operates for remote operation. The flow chart in Figure 8-10 summarizes operation over the bus. The flow chart is called the trigger model because operation is controlled by SCPI commands from the Trigger subsystem. Key SCPI commands are included in the trigger model.

## Idle and initiate

The instrument is considered to be in the idle state whenever operation is at the top of the trigger model. As shown in Figure 8-10, initiation needs to be satisfied to take the instrument out of idle. While in the idle state, the instrument cannot perform any measure or step/scan operations.
The following commands will return operation to the top of the trigger model (idle) at the START point of the trigger model:

- ABORt
- *RCL 0,1 , or 2
- SYSTem:PREset
- *RST

What happens next depends on the state of initiation. If continuous initiation is already enabled, the instrument will leave the idle state. SYSTem:PRESet enables continuous initiation. Therefore, operation will immediately leave the idle state when it is sent. The *RCL command will do the same if INITiation:CONTinuous ON is a user-saved default. *RST disables continuous initiation. Therefore, the instrument will remain in the idle state.

Either of the following two initiate commands will take the instrument out of the idle state:

- INITiate
- INITiate:CONTinuous ON

[^9]Figure 8-10
Trigger model (remote operation)


## Trigger model operation

Once the instrument is taken out of idle, operation proceeds through the trigger model down to the device action. In general, the device action includes a measurement and, when scanning, closes the next channel.

Control Source - As shown in Figure 8-10, a control source is used to hold up operation until the programmed event occurs. The control source options are as follows:

- IMMediate - Event detection is immediately satisfied allowing operation to continue.
- MANual - Event detection is satisfied by pressing the TRIG key. The Model 2790 must be in LOCAL mode for it to respond to the TRIG key. Press the LOCAL key or send GTL over the bus to remove the instrument from the remote mode.
- TIMer - With the timer source enabled (selected), event detection is immediately satisfied. On the initial pass through the loop, the Timer Bypass is enabled allowing operation to bypass the Timer and continue on to the Delay block.

On each subsequent pass through the loop, the Timer Bypass is disabled. Operation is then delayed by the Timer or the Delay. If the user-set Timer interval is larger than the user-set Delay, the Timer will control the length of the delay. Otherwise, the length of the delay is controlled by the user-set Delay period.

The Timer interval can be set from 0 to 999999.999 seconds. The timer resets to its initial state when the instrument goes into the normal mode of operation or into the idle state.

- EXTernal - Event detection is satisfied when an input trigger via the TRIG LINK connector is received by the Model 2790.
- BUS - Event detection is satisfied when a bus trigger (GET or *TRG) is received by the Model 2790.

Delay and Device Action - These blocks of the trigger model operate the same for both front panel and GPIB operation. See the front panel "Trigger model," page 8-2, for operating information on these trigger model blocks. Also see "Reading hold (autosettle)," page 8-6, for details on Hold.

Counters - Programmable counters are used to repeat operations within the trigger model. For example, if performing a 10 -channel scan, the sample counter would be set to 10. Operation will continue until all 10 channels are scanned and measured. If you wanted to repeat the scan three times, you would set the trigger counter to three.

For a sample count value $>1$, the sample readings will automatically be stored in the buffer. For example, with sample count set to 5 , the five measured readings will be stored in the buffer. If the trigger model is configured to repeat the sample readings (i.e. trigger count $=2$ ), those five new readings will overwrite the original five readings in the buffer.

Output Trigger - The Model 2790 will send one or more output triggers. The output trigger is applied to the Trigger Link connector on the rear panel. It can be used to trigger an external instrument to perform an operation.

The trigger model can be configured to output a trigger after the completion of a series of measurements or after every measurement. For example, with the sample counter set to 10 and the trigger counter set to one, a trigger will be sent after the 10 measurements are performed. If instead, the trigger counter is set to 10 and the sample counter is set to 1 , a trigger will be sent after each measurement.

## Triggering commands

Commands for triggering are summarized in Table 8-2.
Table 8-2
SCPI commands - triggering

\begin{tabular}{|c|c|c|c|}
\hline Commands \& Description \& Default \& Ref \\
\hline \begin{tabular}{l}
ABORt \\
INITiate[:IMMediate] \\
INITiate:CONTinuous <b> \\
FETch? \\
READ? \\
TRIGger:SOURce <name> \\
TRIGger:TIMer <n> \\
TRIGger:COUNt <NRf> \\
TRIGger:DELay <n> \\
TRIGger:DELay:AUTO <b> \\
TRIGger:SIGNal \\
SAMPle :COUNt <NRf> \\
[:SENSe[1] \\
:HOLD:WINDow <NRf> \\
:HOLD:COUNt <NRf> \\
:HOLD:STATe <b> \\
:SYSTem:BEEPer:STATe <b> *RST
\end{tabular} \& \begin{tabular}{l}
Reset trigger system. \\
Initiate one trigger cycle. \\
Enable/disable continuous initiation; ON or OFF. \\
Request the last reading(s). \\
Perform an ABORt, INITiate, and a FETch?. \\
Select control source; IMMediate, TIMer, MANual, \\
BUS, or EXTernal. \\
Set timer interval; 0 to 999999.999 (sec). \\
Set trigger count; 1 to 55000 or INFinity. \\
Set delay; 0 to 999999.999 (sec). \\
Enable or disable auto delay. \\
Loop around control source. \\
Set sample count; 1 to 55000 . \\
Optional root command for HOLD commands. \\
Set Hold window in \%; <NRf> = 0.01 to 20. \\
Set Hold count; <NRf> \(=2\) to 100 . \\
Enable or disable Hold. \\
Enable or disable the beeper. \\
Restore *RST defaults (see "Default" column of this table). Places Model 2790 in the idle state.
\end{tabular} \& \begin{tabular}{l}
Note 1 \\
IMM \\
0.1 \\
Note 2 \\
0 \\
1 \\
1 \\
5 \\
OFF \\
ON
\end{tabular} \& a
b
c
d
d
e

f
g
h <br>
\hline
\end{tabular}

Notes:

1. SYSTem:PRESet enables continuous initiation.*RST disables continuous initiation.
2. SYSTem:PRESet sets the trigger count to INF (infinity). *RST sets the count to 1 .

## Reference

a. ABORt - With continuous initiation disabled, the Model 2790 goes into the idle state. With continuous initiation enabled, operation continues at the top of the trigger model.
b. INITiate [:IMMediate]- Whenever the instrument is operating within the trigger model, sending this command causes an error and will be ignored.
c. INITiate:CONTinuous $<\mathbf{b}>$ - With continuous initiation enabled, you cannot use the READ? command or set sample count (SAMPle:COUNt) greater than one.
d. FETch?

READ? - See Section 3, Section 13, and Appendix C for details on using these commands to trigger and retrieve readings.

NOTE [SENSe[1]]:DATA[:LATest]? and [SENSe[1]]:DATA:FRESh? can be used to retrieve the last reading. These commands are also explained in Section 3 and Appendix $C$.
e. TRIGger:SOURce <name> - With the timer control source selected, use the TRIGger:TIMer command to set the interval.
f. TRIGger:DELay:AUTO <b> - The auto delay times are listed in Table 8-1. Disabling auto delay sets the delay time to 0 .
g. TRIGger:SIGNal - Send this action command to bypass the control source when you do not wish to wait for the programmed event to occur. The instrument must be waiting at the control source for the event when this command is sent. Otherwise, an error occurs and the command is ignored.
h. SAMPle:COUNt - A sample count $>1$ specifies how many readings will automatically be stored in the buffer. However, with continuous initiation enabled, you cannot set the sample count greater than one.
i. [SENSe[1]]:HOLD commands - Hold cannot be set when the scanner is enabled (ROUTe:SCAN:LSEL INT). Sending a hold command will result in a settings conflict error (-221).

## Programming example

The following program fragment triggers (and stores in the buffer) 10 readings. Note that in order to send the readings to the computer, you must address the Model 2790 to talk after sending READ?.

```
*RST ' Restore *RST defaults.
TRAC:CLE ' Clear buffer.
TRIG:DEL 0.5 ' Set delay for 0.5sec.
SAMP:COUN 10 ' Set sample count to 10.
READ? ' Trigger, store, and request readings.
```


## Limits and Digital l/O

- Limits - Explains how to perform limit tests on measured readings.
- Digital I/O - Covers the digital I/O port. Explains how the five digital outputs respond to the results of limit tests.
- Remote programming - limits and digital output - Summarizes the commands to perform limit tests and control the digital I/O port.
- Application - sorting resistors - Provides an application to test the tolerances of $100 \Omega$ resistors. Provides the digital output response to the various pass/fail combinations of the limit tests.


## Limits

NOTE Limits cannot be used with the CONT function.
When using limits, you can set and control the values that determine the HIGH/IN/LOW status of subsequent measurements. The limit test is performed on the result of an enabled Rel, Math, Ratio, or Channel Average operation.

NOTE The various instrument operations, including Limits, are performed on the input signal in a sequential manner. See "Signal processing sequence," page C-2, for details. It includes flow charts showing where in the processing sequence that Limits are tested.

There are two sets of limits. Limit 1 uses high and low limits (HI1 and LO1), as does Limit 2 (HI2 and LO2). The HIGH/IN/LOW status indication applies to the first limit (limit 1 or limit 2) that fails. Figure 9-1 illustrates the following limits which are the factory defaults:

Limit 1: HI1 $=+1 \mathrm{~V}$ and $\mathrm{LO} 1=-1 \mathrm{~V}$
Limit 2: $\mathrm{HI} 2=+2 \mathrm{~V}$ and $\mathrm{LO} 2=-2 \mathrm{~V}$
Keep in mind that a limit value for Limit 2 does not have to exceed the Limit 1 value. For example, Limit 2 can be set to $\pm 1 \mathrm{~V}$ and Limit 1 can be set to $\pm 2 \mathrm{~V}$. In this case, Limit 2 will fail before Limit 1.

Figure 9-1

## Default limits



When a reading is within both limits, the message "IN" will be displayed. When the reading is high or low, the HIGH or LOW annunciator turns on, and the number " 1 " or " 2 " will replace the "IN" message. A" 1 " indicates that Limit 1 has failed, while " 2 " indicates that Limit 2 has failed. However, if the reading is outside both limits, the number " 1 " will be displayed.

For the limits shown in Figure 9-1, a reading of +1.5 V is outside Limit 1, but inside Limit 2. The HIGH annunciator will turn on and display the number " 1. ." For a reading of +2.5 V , which is outside both Limit 1 and Limit 2, the same status indication (HIGH, " 1 ") will be displayed since Limit 1 takes precedence.

Overflow readings - A reading that exceeds the present measurement range causes the "OVRFLW" message to be displayed. The "IN," " 1, " and " 2 " messages are not displayed while in the overflow condition. The HIGH annunciator will turn on to indicate an out of limits reading.

The LOW annunciator is not used for an overflow reading. An overflow reading is interpreted by the Model 2790 as a positive reading, even if the input signal is negative. That is the reason why the LOW annunciator does not turn on.

NOTE When a switching module channel is closed, the message " $I$ " replaces the message "IN" to indicate that the reading is inside both Limit 1 and Limit 2.

For limit test readings that get stored in the buffer, the limits status indicators are displayed for each recalled reading.

When a limit test reading is returned using remote programming, limit test status can be included with the reading. See Section 14, "FORMat commands" for details.

When using Limits with Ratio or Ch Avg, the limit values will be compared to the result of the calculation and not to the individual channels.

Beeper - A beeper is also available for limit testing. There are three beeper options: NEVER, OUTSIDE, and INSIDE. These options are explained as follows:

NEVER - With this option, the beeper is disabled.
OUTSIDE - With this option, the beeper sounds when the reading is outside (HIGH or LOW) of Limit 1 or Limit 2. Again referring to Figure $9-1, a+1.5 \mathrm{~V}$ reading is outside (HIGH) Limit 1 and the beeper will sound.

INSIDE - With this option, the beeper will sound when the reading is inside Limit 1 and/or Limit 2. If the reading is inside Limit 1 , the beeper will sound raspy. If the reading is outside Limit 1, but inside Limit 2, the beeper will sound at a lower pitch. The beeper will not sound for readings outside both limits. For the limits shown in Figure 9-1, a 0.5V reading will sound the beeper at its normal pitch, a 1.5 V reading will sound the beeper at a lower pitch, and for a 2.5 V reading, the beeper will not sound.

## Tips to use Limit 2 test

Limits $1<$ Limits 2 - When the set limits for Limit 1 are less than the limits for Limit 2 (i.e., Figure 9-1), use the INSIDE beeper. As previously explained, when the reading is between Limit 1 and Limit 2, the beeper will sound raspy.
Limits $1>$ Limits 2- When the set limits for Limit 1 are greater than the limits for Limit 2, use the OUTSIDE beeper. When the reading is between Limit 1 and Limit 2, the beeper will sound raspy.

## Front panel scanning (7702 only)

When a simple scan using the 7702 module is configured, the present limit values and state will apply to all channels in the scan. When an advanced scan is configured, each channel can have its own unique limits configuration. Details to configure and run a scan are provided in Section 7.

## Remote scanning

For remote programming, the <clist> parameter is used to configure channels for a 7702 scan (Section 7). The <clist> parameter can also include memory pattern locations to allow scanning through 7751/7752/7753 channels (see "Memory patterns," page 2-36).

## Basic limits operation

The limits configuration is the same for all functions. For example, if a reading limit is set to 1 , that will equate to 1 V for a voltage function, 1 A for a current function, and $1 \Omega$ for an ohms function.

## Setting limits

1. Press SHIFT and then LIMITS to display the high limit for Limit 1 (HI1).
2. Use $\downarrow, \Delta, \Delta$, and $\nabla$ to key in the HI1 limit and press ENTER.
3. When editing a reading, use the range designator ( $\Delta, K$, or $M$ ) as a multiplier. With the cursor on the range designator, each press of $\Delta$ or $\nabla$ will increase or decrease the reading by a factor of 10 .
4. Key in the low limit for Limit 1 (LO1) and press ENTER.
5. Key in the high limit for Limit 2 (HI2) and press ENTER.
6. Key in the low limit for Limit 2 (LO2) and press ENTER. The instrument will return to the normal measurement state.

## Beeper settings

The beeper is configured from the OUTPUT menu (shown in Table 9-1) as follows:

1. Press SHIFT and then OUTPUT.
2. Use the $\Delta$ or $\nabla$ key to display the present beeper (BEEP) setting: NEVER, INSIDE, or OUTSIDE.
3. Press $\downarrow$ to position the cursor on the present beeper setting, use the $\Delta$ or $\nabla$ key to display the desired setting and press ENTER. The instrument will return to the normal measurement state.
[^10]
## Enabling/disabling limits

Press SHIFT and then ON/OFF to display the present state (off or on) of limits. To enable limits, use the $\Delta$ or $\nabla$ key to display "LIMITS: ON" and press ENTER.

To disable limits, again press SHIFT and then ON/OFF, select "LIMITS: OFF" and press ENTER.

## Digital I/O

Model 2790's Digital I/O port is accessed at a male DB-9 connector located on the rear panel. The connector location and pin designations are shown in Figure 9-2.

Figure 9-2
Digital I/O port
Model 2790


## Digital input (trigger link input)

When enabled, the Trigger In (pin 6) and Digital Ground (pin 9) can be used as the trigger link input for external triggering. Pin 6 is physically connected to the input line (pin 2) of the TRIG LINK connector.

Pin 8 of the digital I/O is used to enable or disable Trigger In. Trigger In is enabled by leaving pin 8 open or pulling it high $(+5 \mathrm{~V})$. Trigger In is disabled by setting pin 8 low ( 0 V ).

NOTE External triggering is covered in Section 8.

## Digital outputs

The digital I/O port has five digital outputs. Each digital output can be used as a sink to control devices (e.g., relays) or as a source to provide input to external logic (TTL or CMOS) circuitry. The simplified schematic for the digital outputs are shown in Figure 9-3. Note that this illustration shows the schematic for one digital output. All five digital output circuits are identical.

Figure 9-3
Digital I/O port simplified schematic
Model 2790


The five digital output lines (pins 1 through 5) are controlled by limit operations. Each of these five outputs correspond to the following limit operations:
Digital Output 1 - Low Limit 1 (LO1)
Digital Output 2 - High Limit 1 (HI1)
Digital Output 3 - Low Limit 2 (LO2)
Digital Output 4 - High Limit 2 (HI2)
Digital Output 5 - Master Limit (logical OR of the four above limits)
When a limit (LO1, HI1, LO2, HI2) is reached, the digital output line for that limit will be pulled high or low. When a reading is within the limit, the output line is released. Digital output 5 is the logical OR of the four limits. Therefore, if any of the four limits are reached or exceeded, output 5 will be pulled high or low.


#### Abstract

NOTE When the reading is taken and a limit has been reached, there is a short delay before the digital output line is active. As measured from the output trigger (TLINK), the delay is about 10 msec when closing a channel and about 2 msec without a channel closure. Because of additional time needed for data conversion, the delay can be up to 10 times longer for temperature readings. Allow for this delay when designing test systems.


## Logic sense

The selected logic sense (active high or active low) determines if an output is pulled high or low when the limit is reached. If logic sense is set high, the output line will be pulled high when the reading reaches or exceeds the limit. If logic sense is set low, the output line will be pulled low to 0 V when the reading reaches or exceeds the limit.

## Pulse option

Pulse option is available for the digital outputs. When enabled, an output line will pulse high or low (depending on the logic sense setting) for each reading that reaches or exceeds the limit. The factory default time duration for the pulse is 2 ms (maximum), but can be set from 0.001 to 99999.999 seconds using remote programming. Pulse time cannot be set from the front panel.

## NOTE The commands to set pulse time and enableldisable pulse output are listed in

 Table 9-2. See "Digital output commands" in the table.The pulse time does not affect measurement speed. If a subsequent in-limit reading occurs while the output line is being pulsed, the line will be released immediately (pulse terminated).

## Master limit latch

The master limit line is pulled high or low when one or more of the other four limits are reached or exceeded. The master limit line can be programmed to release when a reading is inside all four limits or the master limit can be latched when a failure occurs. When latched, the master limit line will not release until operation within the trigger model returns to and passes the control source (see Section 8 for details on triggering).

When scanning, the latched master limit line will not release until the scan is finished and another scan is started. For example, if after testing a resistor network the master limit line did set, then the network has passed all tests.

## Sink mode - controlling external devices

Each output can be operated from an external supply (voltage range from +5 V to +33 V applied through the external device being driven). The high current sink capacity of the output driver allows direct control of relays, solenoids, and lamps (no additional circuitry needed).

As shown in Figure 9-3, each of the digital, open-collector outputs includes a built-in pull up resistor connected to +5 V . The output transistor is capable of sinking 250 mA from voltages up to +33 V . Each output channel contains a fly-back diode for protection when switching inductive loads (such as a low power solenoid or relay coils). To use these flyback diodes, connect the external supply voltage to pin 7 of the digital I/O port. Make sure the external supply voltage is between +5 V and +33 V and the current required by the device does not exceed 250 mA .

CAUTION On pin 7, do not exceed +33 V . For the output lines, do not exceed the maximum sink current. The maximum sink current for an output line is 250 mA . Exceeding these limits may cause damage to the instrument that is not covered by the warranty.

An externally powered relay connected to the digital output port is shown in Figure 9-4. Other externally powered devices can be similarly connected by replacing the relay with the device. When the output line is pulled low $(0 \mathrm{~V})$, the output transistor sinks current through the external device. In the high state, the output transistor is off (transistor switch open). This interrupts current flow through the external device.

Figure 9-4
Controlling externally powered relays
Model 2790


## Source mode - logic control

The digital outputs can be used as logic inputs to active TTL, low-power TTL, or CMOS inputs. For this mode of operation, the output lines can source up to $200 \mu \mathrm{~A}$.

## CAUTION Each output line can source up to $200 \mu \mathrm{~A}$. Exceeding $200 \mu \mathrm{~A}$ may cause damage to Model 2790 that is not covered by the warranty.

Figure 9-5 shows how to connect a logic device to one of the output lines. When the output line is pulled high, the transistor will turn off (transistor switch open) to provide a reliable logic high output ( $>3.75 \mathrm{~V}$ ). When the output line goes low, the transistor turns on (transistor switch closed) to route current to digital ground. As a result, a low logic output $(0 \mathrm{~V})$ is provided at the output.

If the second input (B) of the NAND gate is connected to another output line of the port, the output of the NAND gate will go to logic 0 when both digital outputs are set high.

Figure 9-5
NAND gate control
Model 2790


## Setting digital output

The OUTPUT menu (shown in Table 9-1) is used to control and configure digital outputs. Menu items for the digital output include:

- DOUTPUT - Use to enable (ON) or disable (OFF) the digital outputs.
- PULSE - Use to enable (YES) or disable (NO) the pulse option for the digital outputs.

NOTE The factory default pulse time is 2 ms maximum. Using remote programming, pulse time can be set from 0.001 to 99999.999 sec . It cannot be set from the front panel.

- LSENSE - Use to select the logic sense: active HIGH or active LOW. With active high selected, an output will be at approximately +5 V when a reading is at or exceeds the limit. Conversely, with active low selected, an output will be at 0 V when a reading reaches or exceeds the limit.
- MASTR LATCH — Use to enable (Y) or disable ( N ) the master limit latch. When enabled, the master limit remains latched when a reading limit is reached or exceeded. When disabled, the master limit line releases immediately when the reading is inside all four limits.


## Table 9-1

## OUTPUT menu

Menu item	Setting	Description
DOUTPUT	ON or OFF   PULSE	Enable/disable digital outputs.   Enable/disable digital pulse   output.
LSENSE	HIGH or LOW   BEEP	NEVER, INSIDE, or OUTSIDE
Set logic sense.		
Set beeper for limits		
(see "Limits" for details).		
Enable/disable master limit latch.		

Perform the following steps to enable and configure digital outputs:

1. Press SHIFT and then OUTPUT.
2. If the digital output is already on (DOUTPUT: ON), proceed to step 3. Otherwise, press to move the cursor to the right, press the $\Delta$ or $\nabla$ key to display "ON," and press ENTER.
3. Use the $\nabla$ key to display the master limit latch (MASTR LATCH) setting: N (no) or Y (yes).
4. If you want to retain the present master limit setting, proceed to step 5. Otherwise, press $>$ to move the cursor to the right, press $\Delta$ or $\nabla$ key to display " $Y$ " or "N," and press ENTER.
5. Use the $\nabla$ key to display the present logic sense (LSENSE) setting: HIGH or LOW.
6. If you want to retain the present logic sense setting, proceed to step 7. Otherwise, press to move the cursor to the right, press the $\Delta$ or $\nabla$ key to display "HIGH" or "LOW," and press ENTER.
7. Use the $\nabla$ key to display the present PULSE mode setting: NO or YES.
8. To retain the present pulse mode setting, press ENTER. Otherwise, press to move the cursor to the right, press the $\Delta$ or $\nabla$ key to display "NO" or "YES," and press ENTER.

## Scanning

While limits can be configured on a per scan channel basis, the digital output configuration cannot. Therefore, for all scan channels that are set to use limits, the digital output will function according to how the Model 2790 is set up when the scan is run.

## Remote programing — limits and digital output

## Limits and digital output commands

The limits and digital output commands are provided in Table 9-2.
Table 9-2
Limits and digital I/O commands

Commands*	Description	Def	Ref
Limit 1 commands			
CALCulate3:LIMit1:UPPer <NRf $>$ [, <clist>]	$\begin{aligned} & \text { Set HI1 limit; <NRf> }=-4294967295 \text { to } \\ & +4294967295 \text {. } \end{aligned}$	1	
CALCulate3:LIMit1:LOWer <NRf> [, <clist>]	$\begin{aligned} & \text { Set LO1 limit; <NRf }>=-4294967295 \text { to } \\ & +4294967295 \text {. } \end{aligned}$	-1	
CALCulate3:LIMit1:STATe <b> [, <clist>]	Enable/disable Limit 1 test; <b> = ON or OFF.		a
CALCulate3:LIMit1:FAIL?	Query test result; $0=$ pass (in), $1=$ fail (high or low).		b
CALCulate3:LIMit1:CLEar	Clear fail indication.		c
CALCulate3:LIMit1:CLEar:AUTO <b>	Enable/disable auto clear; $\langle\mathrm{b}\rangle=$ ON or OFF.	ON	c
CALCulate3:LIMit2:UPPer <NRf> [, <clist>]	$\begin{aligned} & \text { Set HI2 limit; <NRf }>=-4294967295 \text { to } \\ & +4294967295 \text {. } \end{aligned}$	2	
CALCulate3:LIMit2:LOWer <NRf> [, <clist>]	$\begin{aligned} & \text { Set LO2 limit; <NRf }>=-4294967295 \text { to } \\ & +4294967295 \text {. } \end{aligned}$	-2	
CALCulate3:LIMit2:STATe <b> [, <clist>]	Enable/disable Limit 2 test; <b> $=$ ON or OFF.		a
CALCulate3:LIMit2:FAIL?	Query test result; $0=$ pass (in), $1=$ fail (high or low).		b
CALCulate3:LIMit2:CLEar	Clear fail indication.		c
CALCulate3:LIMit2:CLEar:AUTO <b>	Enable/disable auto clear; <b> = ON or OFF.	ON	c

Table 9-2 (cont.)
Limits and digital I/O commands

Commands ${ }^{*}$	Description	Def	Ref
Digital output commands			
CALCulate3:OUTPut:LSENse <name>	Set logic sense; <name> = AHIGh or ALOW.	AHIGh	
CALCulate3:OUTPut:[STATe] <b>	Enable/disable digital outputs; $\langle\mathrm{b}\rangle=\mathrm{ON}$ or OFF.	OFF	
CALCulate3:OUTPut:PULSe:TIMe <NRf>	Set output pulse time in secs; <NRf> = 0.001 to 99999.999 .	0.002	
CALCulate3:OUTPut:PULSe[:STATe] <b>	Enable/disable pulse output; <b> = ON or OFF.	OFF	
CALCulate3:MLIMit:LATChed <b>	Enable/disable master limit latch.	OFF	
Channel list parameter:			
7702 <clist> = (@SCH)			
where: S = Mainframe slot number (1 or 2)			
CH = Switching module channel number (must be 2 digits)			
7751/7752/7753 <clist> (DCV, $\Omega 2, \Omega 4$ ) = (@Mn) (see "Memory patterns," page 2-36).			

*The <clist> parameter is used to configure one or more 7702 channels for a scan.

NOTE When measurements are performed, the readings are fed to other enabled operations, including Limits. Appendix C explains "Data flow (remote operation)" and the commands used to read the result of limit tests.

Reference
a. CALCulate3:LIMit1:STATe <b> [, <clist>]

CALCulate3:LIMit2:STATe <b> [, <clist>]
Unlike front panel operation, Limit 1 and Limit 2 can be controlled (on/off) separately for remote programming. The front panel limit indicators are affected as follows:
Limit 1 enabled - The front panel HIGH/IN/LOW indicators work the same as they do for front panel operation.
Limit 1 disabled and Limit 2 enabled - The status indicators pertain to Limit 2. When the reading is within Limit 2, the message "I2" is displayed. When the reading reaches or exceeds the high or low limit, the HIGH or LOW annunciator will turn on and the number " 2 " will be displayed.

NOTE When limits are disabled from the front panel, both Limit 1 and Limit 2 disable for remote operation.
b. CALCulate3:LIMit1:FAIL? CALCulate3:LIMit2:FAIL?
These commands are used to query the results of Limit 1 and Limit 2:
$0=$ Passing (reading within the high and low limits)
$1=$ Failing (reading has reached or exceeded the high or low limit)
The " 1 " response message does not tell you which limit (high or low) has been reached. To determine which limit has failed, you will have to read the measurement event register (Section 11).
c. CALCulate3:LIMit1:CLEar

CALCulate3:LIMit1:CLEar:AUTO <b>
CALCulate3:LIMit2:CLEar
CALCulate3:LIMit2:CLEar:AUTO <b>
These commands are used to clear the fail ("1") indications for Limit 1 and Limit 2. If auto clear is enabled for a limit, the fail indication clears when instrument operation enters the idle state. With auto clear disabled, the fail indication will remain until it is cleared by the :CLEar command.

## Limits and digital outputs programming example

The following command sequence configures the Model 2790 to perform Limit 1 test on a DCV reading. If the 100 mV limit is reached, digital output \# 2 will be pulled low. If the -100 mV limit is reached, digital output $\# 1$ will be pulled low.

```
*RST ' One-shot measurement mode (DCV).
CALC3:LIM1:UPP 0.1 ' Set HI1 limit to 100mV.
CALC3:LIM1:LOW -0.1 ' Set LO1 limit to -100mV.
CALC3:LIM1:STAT ON ' Enable Limit 1.
CALC3:OUTP:LSEN ALOW ' Set logic sense to active low.
CALC3:OUTP ON ' Enable digital outputs.
READ? ' Trigger and request reading.
CALC3:LIM1:FAIL? ' Request result of limit 1 test.
```


## Application - sorting resistors

For this application, the idea is to sort a batch of $100 \Omega$ resistors into three bins. Bin 1 is for resistors that are within $1 \%$ of the nominal value. Bin 2 is for resistors that exceed $1 \%$ tolerance, but are within $5 \%$. Bin 3 is for resistors that exceed $5 \%$ tolerance.

The digital outputs of the Model 2790 can be used to further automate the test system by controlling a compatible component handler to perform the binning operations.

## Limits

Limit testing is used to test resistor tolerances. Figure 9-6 shows a basic setup using 4 -wire offset-compensated ohms to test $100 \Omega$ resistors.

Figure 9-6
Setup to test $100 \Omega$ resistors
A) Front panel inputs

B) Model 7702


Limit 1 will be used to test for the $1 \%$ tolerance and Limit 2 will be used to test for the 5\% tolerance.

The resistance values for the $1 \%$ and $5 \%$ tolerances are calculated as follows:

$$
\begin{aligned}
\mathrm{R}_{1 \%} & =100 \Omega \times 1 \% & \mathrm{R}_{5 \%} & =100 \Omega \times 5 \% \\
& =100 \Omega \times 0.01 & & =100 \Omega \times 0.05 \\
& =1 \Omega & & =5 \Omega
\end{aligned}
$$

The high and low limits are then calculated as follows:

$$
\begin{aligned}
\text { HI Limit } 1 & =100 \Omega+\mathrm{R}_{1 \%} & \text { HI Limit } 2 & =100 \Omega+\mathrm{R}_{5 \%} \\
& =100 \Omega+1 \Omega & & =100 \Omega+5 \Omega \\
& =101 \Omega & & =105 \Omega \\
\text { LO Limit } 1 & =100 \Omega-\mathrm{R}_{1 \%} & \text { LO Limit } 2 & =100 \Omega-\mathrm{R}_{5 \%} \\
& =100 \Omega-1 \Omega & & =100 \Omega-5 \Omega \\
& =99 \Omega & & =95 \Omega
\end{aligned}
$$

The limits are illustrated in Figure 9-7.
Figure 9-7
Limits to sort $100 \Omega$ resistors ( $1 \%, 5 \%$, and $>5 \%$ )


Front Panel Operation - For front panel operation, the INSIDE beeper mode must be used. A normal pitch beep and the message IN indicates that the resistor is within the $1 \%$ tolerance limit (Figure 9-7). This $1 \%$ resistor belongs in Bin 1. A raspy beep and the " 1 " message indicates that the resistor is $>1 \%$ tolerance but $<5 \%$ tolerance. This $5 \%$ resistor belongs in Bin 2. For resistors $>5 \%$, no beep will sound. Place these resistors in Bin 3.

Remote Operation - For remote operation, make sure both Limit 1 and Limit 2 are enabled. The following table evaluates the three possible pass/fail combinations for this example.

Limit 1 result	Limit 2 result	Resistor tolerance	Bin assignment
Pass	Pass	$1 \%$	1
Fail	Pass	$5 \%$	2
Fail	Fail	$>5 \%$	3

Keep in mind that a fail condition must be reset before testing the next resistor. Fail can be reset manually or automatically (see Table 9-2, CLEar command).

## Digital outputs

With the digital outputs of the Model 2790 enabled, the digital outputs will respond as follows for each resistor reading:

LO limit 2	LO limit 1	HI limit 1	HI limit 2	Resistor   tolerance	Bin	Affected   outputs*
Pass	Pass	Pass	Pass	$1 \%$	1	None
Pass	Fail	Pass	Pass	$5 \%$	2	$\# 1$ and \#5
Pass	Pass	Fail	Pass	$5 \%$	2	$\# 2$ and \#5
Fail	Fail	Pass	Pass	$>5 \%$	3	$\# 1, \# 3$, and \#5
Pass	Pass	Fail	Fail	$>5 \%$	3	$\# 2, \# 4$, and \#5

[^11]
## 10

## Remote Operations

- Operation enhancements - Summarizes some of the more important operations that can only be performed using remote operation.
- GPIB setup - Covers GPIB bus standards, selecting the GPIB, primary address selection, and bus connections.
- General bus commands - Describes general bus commands used for fundamental GPIB control.
- Front panel GPIB operation - Summarizes GPIB error messages, status indicators, and using the LOCAL key.
- Programming syntax - Describes the basic programming syntax for both common and SCPI commands.
- RS-232 interface operation - Outlines use of the RS-232 interface to control the Model 2790.


## Operation enhancements

There are some operations you can do over the IEEE-488 bus and RS-232 interface that you cannot do from the front panel. The more important ones are summarized below.

## Pseudocards

Using remote operation, you can assign a pseudocard to an empty switching module slot. With a pseudocard installed, the Model 2790 will operate as if the switching module is installed in the Model 2790. This feature allows you to configure your system without having the actual switching module installed in the unit. There is a pseudocard for the 7751, 7752,7753 , and 7702 switching modules.

A single SCPI command (SYSTem:PCARdX, where $\mathrm{X}=1$ or 2 ) is used to install a pseudocard in an empty switching module slot. Details are provided in Section 2.

A pseudocard cannot be installed from the front panel. However, once it is installed, you can take the Model 2790 out of remote and use the front panel. When the instrument is turned off, the pseudocard will be lost (uninstalled).

## Autozero

Autozero is part of the normal measurement process to assure stable, accurate measurements. Autozero can be disabled to increase measurement speed. However, the readings will eventually become inaccurate over time and temperature changes.

Autozero can only be disabled using remote programming. It cannot be disabled from the front panel. Autozero is covered in Section 3.

## dB calculation

Using remote programming, you can select the dB calculation for DC or AC voltage. The dB calculation makes it possible to compress a large range of measurements into a much smaller scope. See Section 5 to select and configure the dB calculation.

You cannot select dB from the front panel. However, once it is selected you can take the Model 2790 out of remote and use the front panel. When the instrument is reset to default conditions (or turned off), dB will be lost.

## Separate function setups

A few settings from the front panel are global. That is, the setting on one function also applies to the other functions. For example, if you set DCV for $31 / 2$ digits, all the other functions will also be set to $31 / 2$ digits. Using remote programming, each function can have its own unique setup. For example, DCV can be set to $31 / 2$ digits, ACI can be set to $41 / 2$ digits, and DCI can be set to $51 / 2$ digits.

Global settings from the front panel that can be set separately using remote programming include digits, rate, and filter configuration (except on/off, which can be set separately).

NOTE Do not confuse function setups with 7702 scan channel setups. For scan channels, separate settings for digits, rate, and filter configuration can be set from either the front panel or remote programming. See Section 7 for details on scan channel setup.

## DCV input divider

Using remote programming, you can enable the DCV input divider for the $100 \mathrm{mV}, 1 \mathrm{~V}$, and 10 V ranges. When enabled, the input resistance for these DCV ranges are reduced to $10 \mathrm{M} \Omega$. See Section 3 for details on the DCV input divider.

## Multiple channel operation

For 7702 system channel operation, when one measurement channel is closed, the previous measurement channel opens. With the use of the ROUTe:MULTiple commands, you gain independent control of all switching module channels, including the relays that connect the input signal to the DMM. See Section 2 for details.

## GPIB setup

The following provides information about GPIB standards, selecting the GPIB, setting the primary address, and bus connections.

## GPIB standards

The GPIB is the IEEE-488 instrumentation data bus with hardware and programming standards originally adopted by the IEEE (Institute of Electrical and Electronic Engineers) in 1975. The Model 2790 conforms to these standards:

- IEEE-488.1-1987
- IEEE-488.2-1992

The above standards define a syntax for sending data to and from instruments, how an instrument interprets this data, what registers should exist to record the state of the instrument, and a group of common commands. The Model 2790 also conforms to this standard:

- SCPI 1996.0 (Standard Commands for Programmable Instruments)

This standard defines a command language protocol. It goes one step farther than IEEE-488.2-1992 and defines a standard set of commands to control every programmable aspect of an instrument.

## Selecting GPIB and setting primary address

The Model 2790 is shipped from the factory with the GPIB selected and the primary address set to 16 . You can set the address to a value from 0 to 30 , but do not assign the same address to another device or to a controller that is on the same GPIB bus (controller addresses are usually 0 or 21).

Perform the following steps to select the GPIB and set the primary address:

1. Press the SHIFT key and then the GPIB key. The GPIB ON or GPIB OFF message will be displayed.
2. If the GPIB is already ON, press ENTER and proceed to step 3. Otherwise, press the key to place the cursor on OFF, press the $\Delta$ or $\nabla$ key to display the ON state, and then press ENTER.

NOTE Enabling (ON) the GPIB disables (OFF) the RS-232 interface. Disabling the GPIB enables the RS-232.
3. To retain the presently displayed address (ADDR) value, press ENTER. Otherwise, press the $\rightarrow$ key to place the cursor on the address value, use the $\downarrow, \Delta$, and $\nabla$ keys to display the desired address value and then press ENTER.

## GPIB connections

To connect the Model 2790 to the GPIB bus, use a cable equipped with standard IEEE-488 connectors as shown in Figure 10-1.

Figure 10-1
IEEE-488 connector


To allow many parallel connections to one instrument, stack the connectors. Two screws are located on each connector to ensure that connections remain secure. Present standards call for metric threads, which are identified with dark-colored screws. Earlier versions have different screws, which are silver-colored. Do not use these types of connectors on the Model 2790; it is designed for metric threads.

Figure 10-2 shows a typical connecting scheme for a multi-unit test system.
Figure 10-2
IEEE-488 connections


To avoid possible mechanical damage, stack no more than three connectors on any one unit.

NOTE To minimize interference caused by electromagnetic radiation, use only shielded IEEE-488 cables. Available shielded cables from Keithley are Models 7007-1 and 7007-2.

To connect the Model 2790 to the IEEE-488 bus, follow these steps:

1. Line up the cable connector with the connector located on the rear panel. The connector is designed so it will fit only one way. Figure 10-3 shows the location of the IEEE-488 connector.
2. Tighten the screws securely, making sure not to overtighten them.
3. Connect any additional connectors from other instruments as required for your application.
4. Make sure the other end of the cable is properly connected to the controller. Most controllers are equipped with an IEEE-488 style connector, but a few may require a different type of connecting cable. See your controller's instruction manual for information about properly connecting to the IEEE-488 bus.

NOTE You can only have 15 devices connected to an IEEE-488 bus, including the controller. The maximum cable length is either 20 meters or two meters multiplied by the number of devices, whichever is less. Not observing these limits may cause erratic bus operation.

Figure 10-3
IEEE-488 connector location


## General bus commands

General commands are those commands, such as DCL, that have the same general meaning regardless of the instrument. Table 10-1 lists the general bus commands.

Table 10-1
General bus commands

Command	Effect on Model 2790
REN	Goes into effect when next addressed to listen.
IFC	Goes into talker and listener idle states.
LLO	LOCAL key locked out.
GTL	Cancel remote; restore Model 2790 front panel operation.
Cancel remote; restore front panel operation for all devices.	
DCL	Returns all devices to known conditions.
SDC	Returns Model 2790 to known conditions.
GET	Initiates a trigger.
SPE, SPD	Serial polls the Model 2790.

## REN (remote enable)

The remote enable command is sent to the Model 2790 by the controller to set up the instrument for remote operation. Generally, the instrument should be placed in the remote mode before you attempt to program it over the bus. Setting REN true does not place the instrument in the remote state. You must address the instrument to listen after setting REN true before it goes into remote.
The Model 2790 must be in remote in order to use the following commands to trigger and acquire readings:

- INITiate and then FETCh?
- READ?
- MEASure?


## IFC (interface clear)

The IFC command is sent by the controller to place the Model 2790 in the local, talker, listener idle states. The unit responds to the IFC command by canceling front panel TALK or LSTN lights, if the instrument was previously placed in one of these states.

Note that this command does not affect the status of the instrument. Settings, data, and event registers are not changed.

With auto output off enabled (SOURce1:CLEar:AUTO ON), the output will remain on if operation is terminated before the output has a chance to automatically turn off.

To send the IFC command, the controller need only set the IFC line true for a minimum of $100 \mu \mathrm{~s}$.

## LLO (local lockout)

Use the LLO command to prevent local operation of the instrument. After the unit receives LLO, all of its front panel controls except OUTPUT OFF are inoperative. In this state, pressing LOCAL will not restore control to the front panel. The GTL command restores control to the front panel. Cycling power will also cancel local lockout.

## GTL (go to local)

Use the GTL command to put a remote-mode instrument into local mode. The GTL command also restores front panel key operation.

## DCL (device clear)

Use the DCL command to clear the GPIB interface and return it to a known state. Note that the DCL command is not an addressed command, so all instruments equipped to implement DCL will do so simultaneously.

When the Model 2790 receives a DCL command, it clears the Input Buffer and Output Queue, cancels deferred commands, and clears any command that prevents the processing of any other device command. A DCL does not affect instrument settings and stored data.

## SDC (selective device clear)

The SDC command is an addressed command that performs essentially the same function as the DCL command. However, since each device must be individually addressed, the SDC command provides a method to clear only selected instruments instead of clearing all instruments simultaneously, as is the case with DCL.

## GET (group execute trigger)

GET is a GPIB trigger that is used as a trigger event to control operation. The Model 2790 reacts to this trigger if it is the programmed trigger control source. The following command selects the GPIB trigger control source:

```
TRIGger:SOURce BUS
```

When a GPIB trigger is sent to the Model 2790, operation will continue in the trigger model. See Section 8 for details on triggering.

## SPE, SPD (serial polling)

Use the serial polling sequence to obtain the Model 2790 serial poll byte. The serial poll byte contains important information about internal functions. (See Section 11, "Status Structure.") Generally, the serial polling sequence is used by the controller to determine which of several instruments has requested service with the SRQ line. However, the serial polling sequence may be performed at any time to obtain the status byte from the Model 2790.

## Front panel GPIB operation

This section describes aspects of the front panel that are part of GPIB operation, including messages, status indicators, and the LOCAL key.

## Error and status messages

See Appendix B for a list of error and status messages associated with IEEE-488 programming. The instrument can be programmed to generate an SRQ and command queries can be performed to check for specific error conditions.

## GPIB status indicators

The REM (remote), TALK (talk), LSTN (listen), and SRQ (service request) annunciators show the GPIB bus status. Each of these indicators is described below.

## REM

This indicator shows when the instrument is in the remote state. REM does not necessarily indicate the state of the bus REN line, as the instrument must be addressed to listen with REN true before the REM indicator turns on. When the instrument is in remote, all front panel keys, except for the LOCAL key, are locked out. When REM is turned off, the instrument is in the local state and front panel operation is restored.

NOTE If LLO is in effect, LOCAL will be locked out. If TRIGger:SOURce is set to manual, the TRIG key will be active in remote.

## TALK

This indicator is on when the instrument is in the talker active state. Place the unit in the talk state by addressing it to talk with the correct MTA (My Talk Address) command.
TALK is off when the unit is in the talker idle state. Place the unit in the talker idle state by sending an UNT (Untalk) command, addressing it to listen, or sending the IFC (Interface Clear) command.

## LSTN

This indicator is on when the Model 2790 is in the listener active state, which is activated by addressing the instrument to listen with the correct MLA (My Listen Address) command. LSTN is off when the unit is in the listener idle state. Place the unit in the listener idle state by sending UNL (Unlisten), addressing it to talk, or sending IFC (Interface Clear) command over the bus.

## SRQ

You can program the instrument to generate a service request (SRQ) when one or more errors or conditions occur. When this indicator is on, a service request has been generated. This indicator stays on until the serial poll byte is read or all the conditions that caused SRQ have been cleared. See Section 11, "Status Structure," for more information.

## LOCAL key

The LOCAL key cancels the remote state and restores local operation of the instrument.
Pressing the LOCAL key also turns off the REM indicator and returns the display to normal if a user-defined message was displayed.

If the LLO (Local Lockout) command is in effect, the LOCAL key is also inoperative.

## Programming syntax

The information in this section covers syntax for both common commands and SCPI commands. For information not covered here, see the IEEE-488.2 and SCPI standards. See Section 12 through Section 15 for more details on common and SCPI commands.

## Command words

Program messages are made up of one or more command words.

## Commands and command parameters

Common commands and SCPI commands may or may not use a parameter. The following are some examples:

```
*SAV <NRf> Parameter <NRf> required
*RST No parameter used
SYSTem:BEEPer Parameter required
SYSTem:PRESet No parameter used
```

NOTE At least one space between the command word and the parameter is required.
Brackets [ ] — Some command words are enclosed in brackets ([ ]). These brackets are used to denote an optional command word that does not need to be included in the program message. For example:

INITiate[:IMMediate]
These brackets indicate that IMMediate is implied (optional) and does not have to be used. Thus, the above command can be sent in one of two ways:

INITiate
or
INITiate:IMMediate
Notice that the optional command is used without the brackets. When using optional command words in your program, do not include the brackets.

Parameter types - The following are some of the more common parameter types:
<b> Boolean - Used to enable or disable an instrument operation. 0 or OFF disables the operation and 1 or ON enables the operation. Example:

SYSTem:LSYNc ON Enable line synchronization
<name> Name parameter - Select a parameter name from a listed group. Example:

$$
\begin{aligned}
\text { <name> } & =\text { NEVer } \\
& =\text { NEXt } \\
& =\text { ALWays }
\end{aligned}
$$

## TRACe:FEED:CONTrol NEXt

<NRf> Numeric representation format - This parameter is a number that can be expressed as an integer (e.g., 8), a real number (e.g., 23.6), or an exponent (2.3E6). Example:
<n> Numeric value - A numeric value parameter can consist of an NRf number or one of the following name parameters; DEFault, MINimum, MAXimum. When the DEFault parameter is used, the instrument is programmed to the *RST default value. When the MINimum parameter is used, the instrument is programmed to the lowest allowable value. When the MAXimum parameter is used, the instrument is programmed to the largest allowable value. Examples:

ARM:TIMer 0.1 Sets timer to 100 msec .
ARM:TIMer DEFault Sets timer to 0.1 sec .
ARM:TIMer MINimum Sets timer to 1 msec .
ARM:TIMer MAXimum Sets timer to 99999.99 sec .
<clist> Channel list - Specify one or more channels. Example:
ROUTe:SCAN (@101:110) 7702 scan list; slot 1, channels 1-10
<list> List - Specify one or more numbers for a list. Example:
STATus:QUEue:ENABle (-110:-222) Enable errors -110 through -222
Angle brackets < > Angle brackets ( $<>$ ) are used to denote a parameter type. Do not include the brackets in the program message. For example:

RATio <b>

The $<b>$ indicates a Boolean-type parameter is required. Therefore, to enable channel ratio, you must send the command with the ON or 1 parameter as follows:

RATio ON
RATIO 1

## Query commands

This type of command requests (queries) the presently programmed status. It is identified by the question mark (?) at the end of the fundamental form of the command. Most commands have a query form:

TRIGger:TIMer? Queries the timer interval.
Most commands that require a numeric parameter ( $\langle\mathrm{n}\rangle$ ) can also use the DEFault, MINimum, and MAXimum parameters for the query form. These query forms are used to determine the *RST default value and the upper and lower limits for the fundamental command. Examples are:

TRIGger:TIMer? DEFault Queries the *RST default value. TRIGger:TIMer? MINimum TRIGger:TIMer? MAXimum

Queries the lowest allowable value.
Queries the largest allowable value.

## Case sensitivity

Common commands and SCPI commands are not case sensitive. You can use upper or lower case and any case combination. Examples:

*RST	$=*$ rst
DATA $?$	$=$ data $?$
SYSTem:PRESet	$=$ system:preset

NOTE Using all upper case will result in slightly faster command response times.

## Long-form and short-form versions

A SCPI command word can be sent in its long-form or short-form version. The command subsystem tables in Section 15 provide the long-form version. However, the short-form version is indicated by upper case characters. Examples:

```
SYSTem:PRESet long-form
SYST:PRES short-form
SYSTem:PRES long-form and short-form combination
```

Note that each command word must be in long-form or short-form and not something in between. For example, SYSTe:PRESe is illegal and will generate a -113 Undefined Header error. The command will not be executed.

## Short-form rules

Use the following rules to determine the short-form version of any SCPI command:

- If the length of the command word is four letters or less, no short form version exists. Example: :auto = :auto

These rules apply to command words that exceed four letters:

- If the fourth letter of the command word is a vowel (including " $y$ "), delete it and all the letters after it. Example immediate $=$ imm
- If the fourth letter of the command word is a consonant, retain it but drop all the letters after it. Example:
format = form
- If the command contains a question mark (?; query) or a non-optional number included in the command word, you must include it in the short-form version. Example:
:delay? = :del?
- Command words or characters that are enclosed in brackets ([ ]) are optional and need not be included in the program message.

NOTE For fastest response to commands, always use short forms.

## Program messages

A program message is made up of one or more command words sent by the computer to the instrument. Each common command is a three letter acronym preceded by an asterisk (*). SCPI commands are categorized in the STATus subsystem and are used to explain how command words are structured to formulate program messages.

```
STATus
 :OPERation
 :ENABle <NRf>
 :ENABle?
 :PRESet
```

```
Path (Root)
 Path
 Command and parameter
 Query command
 Command
```


## Single command messages

The above command structure has three levels. The first level is made up of the root command (STATus) and serves as a path. The second level is made up of another path (:OPERation) and a command (:PRESet). The third path is made up of one command for the :OPERation path. The three commands in this structure can be executed by sending three separate program messages as follows:

```
stat:oper:enab <NRf>
stat:oper:enab?
stat:pres
```

In each of the above program messages, the path pointer starts at the root command (stat) and moves down the command levels until the command is executed.

## Multiple command messages

You can send multiple command messages in the same program message as long as they are separated by semicolons (;). The following is an example showing two commands in one program message:
stat:oper; stat:oper:enab <NRf>

When the above is sent, the first command word is recognized as the root command (stat). When the next colon is detected, the path pointer moves down to the next command level and executes the command. When the path pointer sees the colon after the semicolon (;), it resets back to the root level and starts over.

Commands that are on the same command level can be executed without having to retype the entire command path. Example:
stat:oper:enab <NRf>; enab?
After the first command (:enab) is executed, the path pointer is at the third command level in the structure. Since :enab? is also on the third level, it can be typed in without repeating the entire path name. Notice that the leading colon for :enab? is not included in the program message. If a colon were included, the path pointer would reset to the root level and expect a root command. Since :enab? is not a root command, an error would occur.

## Command path rules

- Each new program message must begin with the root command, unless it is optional (e.g., [SENSe]). If the root is optional, simply treat a command word on the next level as the root. For fastest operation, do not send optional data.
- A colon (:) can be used at the beginning of a program message. However, using the colon slows down execution time. Example:

```
stat:pres = :stat:pres
```

- When the path pointer detects a colon (:) it moves down to the next command level. An exception is when the path pointer detects a semicolon (;), which is used to separate commands within the program message (see next rule).
- When the path pointer detects a colon (:) that immediately follows a semicolon (;), it resets back to the root level.
- The path pointer can only move down. It cannot move up a level. Executing a command at a higher level requires that you start over at the root command.


## Using common and SCPI commands in the same message

Both common commands and SCPI commands can be used in the same message as long as they are separated by semicolons (;). A common command can be executed at any command level and will not affect the path pointer. Example:
stat:oper:enab <NRf>; *ESE <NRf>

## Program message terminator (PMT)

Each program message must be terminated with an LF (line feed), EOI (end or identify), or an LF+EOI. The bus will hang if your computer does not provide this termination. The following example shows how a multiple command program message must be terminated:
outp on <PMT>

## Command execution rules

- Commands execute in the order that they are presented in the program message.
- An invalid command generates an error and, of course, is not executed.
- Valid commands that precede an invalid command in a multiple command program message are executed.
- Valid commands that follow an invalid command in a multiple command program message are ignored.


## Response messages

A response message is the message sent by the instrument to the computer in response to a query command program message.

## Sending a response message

After sending a query command, the response message is placed in the Output Queue. When the Model 2790 is then addressed to talk, the response message is sent from the Output Queue to the computer.

## Multiple response messages

If you send more than one query command in the same program message (see "Multiple command messages," page 10-14), the multiple response messages for all the queries are sent to the computer when the Model 2790 is addressed to talk. The responses are sent in the order the query commands were sent and are separated by semicolons (;). Items within the same query are separated by commas (,). The following example shows the response message for a program message that contains four single item query commands:
$0 ; 1 ; 1 ; 0$

## Response message terminator (RMT)

Each response is terminated with an LF (line feed) and EOI (end or identify). The following example shows how a multiple response message is terminated:
$0 ; 1 ; 1 ; 0<$ RMT $>$

## Message exchange protocol

Two rules summarize the message exchange protocol:
Rule 1. You must always tell the Model 2790 what to send to the computer.
The following two steps must always be performed to send information from the instrument to the computer:

1. Send the appropriate query command(s) in a program message.
2. Address the Model 2790 to talk.

Rule 2. The complete response message must be received by the computer before another program message can be sent to the Model 2790.

## RS-232 interface operation

## Sending and receiving data

The RS-232 interface transfers data using eight data bits, one stop bit, and no parity. Make sure the controller you connect to the multimeter also uses these settings.

You can break data transmissions by sending a ${ }^{\wedge} \mathrm{C}$ (decimal 3 ) or ${ }^{\wedge} \mathrm{X}$ (decimal 18) character string to the instrument. This clears any pending operation and discards any pending output.

You can break an RS-232 transmission of buffer readings by pressing LOCAL and then EXIT. The next command to send buffer data (i.e., TRACe:DATA?) will start at the beginning, rather than where the transmission was halted.

## Baud rate

The baud rate is the rate at which the Model 2790 multimeter and the programming terminal communicate. Choose from these available rates:

- 19.2 k
- 9600
- 4800
- 2400
- 1200
- 600
- 300

The factory selected baud rate is 9600 .
When you choose a baud rate, make sure that the programming terminal that you are connecting to the Model 2790 can support the baud rate you selected. Both the multimeter and the other device must be configured for the same baud rate.

## Signal handshaking (flow control)

Signal handshaking between the controller and the instrument allows the two devices to communicate to each other regarding being ready or not ready to receive data. The Model 2790 does not support hardware handshaking (flow control).

Software flow control is in the form of X__ON and X__OFF characters and is enabled when XonXoFF is selected from the RS232 FLOW menu. When the input queue of the Model 2790 becomes more than $3 / 4$ full, the instrument issues an X_OFF command. The control program should respond to this and stop sending characters until the Model 2790 issues the X_ON, which it will do once its input buffer has dropped below half-full. The Model 2790 recognizes X_ON and X_OFF sent from the controller. An X_OFF will cause the Model 2790 to stop outputting characters until it sees an X_ON. Incoming commands are processed after the $<\mathrm{CR}>$ character is received from the controller.

NOTE For RS-232 operation, *OPC or *OPC? should be used with slow responding commands. A list of the slowest responding commands and details on *OPC and *OPC? are provided in Section 12.

XonXoFF is the FACT and *RST default flow control setting.
If NONE is the selected flow control, then there will be no signal handshaking between the controller and the Model 2790. Data will be lost if transmitted before the receiving device is ready.

NOTE Even with XonXoFF selected, the computer may lose data from the Model 2790 if the return string is very large (approximately 30,000 or more characters) and one of the higher baud rates is selected. With no flow control (NONE selected), the error occurs with a much smaller return string. Your program should provide some type of error checking for these situations.

NOTE Another solution to the problem is to use the TRACe:DATA:SELected? <start>, <count> command to return small portions ( 100 points) of a very large buffer. With this command, you specify a buffer location (<start>) and the number of readings to return (<count>). See Section 6 for details.

## Terminator

The Model 2790 can be configured to terminate each program message that it transmits to the controller with any of the following combinations of $\langle\mathrm{CR}\rangle$ and $\langle\mathrm{LF}\rangle$.
<CR> Carriage return
$<\mathrm{CR}+\mathrm{LF}>\quad$ Carriage return and line feed
$<$ LF $>\quad$ Line feed
$<\mathrm{LF}+\mathrm{CR}>\quad$ Line feed and carriage return

## Selecting and configuring RS-232 interface

After selecting (enabling) the RS-232 interface, you will then set the baud rate, flow control, and terminator.

1. Press the SHIFT key and then the RS-232 key. The RS 232 ON or RS 232 OFF message will be displayed.
2. If the RS-232 is already ON, press ENTER and proceed to step 3. Otherwise, press the $\quad$ key to place the cursor on OFF, press the $\Delta$ or $\nabla$ key to display the ON state, and then press ENTER.

NOTE Enabling (ON) the RS-232 interface disables (OFF) the GPIB. Disabling the RS-232 interface enables the GPIB.
3. To retain the presently displayed BAUD rate, press ENTER and proceed to step 4. Otherwise, press the key to place the cursor on the baud rate value, use the $\Delta$ or $\nabla$ key to display the desired baud rate, and then press ENTER.
4. To retain the presently displayed FLOW control, press ENTER and proceed to step 5. Otherwise, press the key to place the cursor on the flow control setting, use the $\Delta$ or $\nabla$ key to display the alternate flow control setting, and then press ENTER.
5. To retain the presently displayed terminator (Tx TERM), press ENTER. Otherwise, press the $\quad$ key to place the cursor on the terminator setting, use the $\Delta$ or $\nabla$ key to display the desired terminator, and then press ENTER.

## RS-232 connections

The RS-232 serial port is connected to the serial port of a computer using a straightthrough RS-232 cable terminated with DB-9 connectors. Do not use a null modem cable. The serial port uses the transmit (TXD), receive (RXD), and signal ground (GND) lines of the RS-232 standard. It does not use the hardware handshaking lines, CTS and RTS.
Figure 10-4 shows the rear panel connector for the RS-232 interface and Table 10-2 shows the pinout for the connector.

If your computer uses a DB-25 connector for the RS-232 interface, you will need a cable or adapter with a DB- 25 connector on one end and a DB-9 connector on the other, wired straight through (not null modem).

Figure 10-4

## RS-232 interface connector



Rear Panel Connector

Table 10-2
RS-232 connector pinout

Pin number	Description
1	No connection
2	TXD, transmit data
3	RXD, receive data
4	No connection
5	GND, signal ground
6	Not used
7	RTS, ready to send ${ }^{1}$
8	CTS, clear to send ${ }^{1}$
9	No connection

${ }^{1}$ CTS and RTS are not used.

Table 10-3 provides pinout identification for the 9-pin (DB-9) or 25-pin (DB-25) serial port connector on the computer (PC).

Table 10-3
PC serial port pinout

Signal	DB-9 pin   number	DB-25 pin   number
DCD, data carrier detect	1	8
RXD, receive data	2	3
TXD, transmit data	3	2
DTR, data terminal ready	4	20
GND, signal ground	5	7
DSR, data set ready	6	6
RTS, request to send	7	4
CTS, clear to send	8	5
RI, ring indicator	9	22

## Error messages

See Appendix B for RS-232 error messages ( +800 through +808 ).

## Status Structure

- Overview - Provides an operational overview of the status structure for the Model 2790.
- Clearing registers and queues - Covers the actions that clear (reset) registers and queues.
- Programming and reading registers - Explains how to program enable registers and read any register in the status structure.
- Status byte and service request (SRQ) - Explains how to program the Status Byte to generate service requests (SRQs). Shows how to use the serial poll sequence to detect SRQs.
- Status register sets - Provides bit identification and command information for the four status register sets: Standard Event Status, Operation Event Status, Measurement Event Status, and Questionable Event Status.
- Queues - Provides details and command information on the Output Queue and Error Queue.


## Overview

The Model 2790 provides a series of status registers and queues allowing the operator to monitor and manipulate the various instrument events. The status structure is shown in Figure 11-1. The heart of the status structure is the Status Byte Register. This register can be read by the user's test program to determine if a service request (SRQ) has occurred and what event caused it.

## Status byte and SRQ

The Status Byte Register receives the summary bits of four status register sets and two queues. The register sets and queues monitor the various instrument events. When an enabled event occurs, it sets a summary bit in the Status Byte Register. When a summary bit of the Status Byte is set and its corresponding enable bit is set (as programmed by the user), the RQS/MSS bit will set to indicate that an SRQ has occurred.

## Status register sets

A typical status register set is made up of a condition register, an event register, and an event enable register. A condition register is a read-only register that constantly updates to reflect the present operating conditions of the instrument.

When an event occurs, the appropriate event register bit sets to 1 . The bit remains latched to 1 until the register is reset. When an event register bit is set and its corresponding enable bit is set (as programmed by the user), the output (summary) of the register will set to 1 , which in turn sets the summary bit of the Status Byte Register.

## Queues

The Model 2790 uses an Output Queue and an Error Queue. The response messages to query commands are placed in the Output Queue. As various programming errors and status messages occur, they are placed in the Error Queue. When a queue contains data, it sets the appropriate summary bit of the Status Byte Register.

Figure 11-1
Model 2790 status register structure


## Clearing registers and queues

When the Model 2790 is turned on, the bits of all registers in the status structure are cleared (reset to 0 ), and the two queues are empty. Commands to reset the event register and event enable register and the Error Queue are listed in Table 11-1. In addition to these commands, any enable register can be reset by sending the 0 parameter value with the individual command to program the register.

NOTE SYSTem:PRESet and $*$ RST have no effect on status structure registers and queиes.

Table 11-1
Common and SCPI commands to reset registers and clear queues

Commands	Description	Notes
Reset registers		
*CLS	Reset all bits of the following event registers to 0 :   Standard Event Register   Operation Event Register   Measurement Event Register   Questionable Event Register	1
STATus:PRESet	Reset all bits of the following enable registers to 0 : Operation Event Enable Register Measurement Event Enable Register Questionable Event Enable Register	1
Clear error queue		
STATus:QUEue:CLEar	Clear all messages from Error Queue	3
SYSTem:CLEar	Clear messages from Error Queue	3

Notes:

1. The Standard Event Enable Register is not reset by STATus:PRESet or *CLS. Send the 0 parameter value with *ESE to reset all bits of that enable register to 0 (see "Status byte and service request commands," page 11-9).
2. STATus:PRESet has no effect on the Error Queue.
3. Use either of the two clear commands to clear the Error Queue.

## Programming and reading registers

## Programming enable registers

The only registers that can be programmed by the user are the enable registers. All other registers in the status structure are read-only registers. The following explains how to ascertain the parameter values for the various commands used to program enable registers. The actual commands are covered later in this section (Table 11-2 and Table 11-5).

A command to program an event enable register is sent with a decimal parameter value that determines the desired state ( 0 or 1 ) of each bit in the appropriate register. The bit positions of the register (Figure 11-2) indicate the binary parameter value. For example, if you wish to set bits B4, B3, and B1, the binary value would be 11010 (where B4=1, B3=1, $\mathrm{B} 1=1$, and all other bits are 0 ).

The binary value is then converted to its decimal equivalent:
Binary 11010 = Decimal 26
Figure 11-2 includes the decimal weight for each register bit. To set bits B4, B3, and B1, the decimal parameter value would be the sum of the decimal weights for those bits $(16+8+2=26)$.

Figure 11-2

## 16-bit status register

A) Bits 0 through 7

Bit Position	B7	B6	B5	B4	B3	B2	B1	B0
Binary Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Decimal	128	64	32	16	8	4	2	1
Weights	(2)	(26)	(25)	(24)	(23)	(2)	(2 ${ }^{1}$ )	$\left(2^{0}\right)$

B) Bits 8 through 15

Bit Position	B15	B14	B13	B12	B11	B10	B9	B8
Binary Value	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$
Decimal	32768	16384	8192	4096	2048	1024	512	256
Weights	$\left(2^{15}\right)$	$\left(2^{14}\right)$	$\left(2^{13}\right)$	$\left(2^{12}\right)$	$\left(2^{11}\right)$	$\left(2^{10}\right)$	$\left(2^{9}\right)$	$\left(2^{8}\right)$

## Reading registers

Any register in the status structure can be read by using the appropriate query (?) command. The following explains how to interpret the returned value (response message). The actual query commands are covered later in this section (Table 11-2 through Table 11-5).
The response message for a register query will be a decimal value. This decimal value will have to be converted to its binary equivalent. For example, decimal 19 in binary is 10011. This binary value indicates that bits B0, B1, and B4 are set (1).

## Status byte and service request (SRQ)

Service request is controlled by two 8-bit registers: the Status Byte Register and the Service Request Enable Register. Figure 11-3 shows the structure of these registers.

Figure 11-3
Status byte and service request (SRQ)


OSB = Operation Summary Bit
MSS = Master Summary Status
RQS $=$ Request for Service
ESB = Event Summary Bit
MAV = Message Available

QSB = Questionable Summary Bit
EAV $=$ Error Available
MSB = Measurement Summary Bit
\& = Logical AND
OR = Logical OR

## Status byte register

The summary messages from the status registers and queues are used to set or clear the appropriate bits (B0, B2, B3, B4, B5, and B7) of the Status Byte Register. These summary bits do not latch and their states ( 0 or 1 ) are solely dependent on the summary messages ( 0 or 1). For example, if the Standard Event Register is read, its register will clear. As a result, its summary message will reset to 0 , which in turn will reset the ESB bit in the Status Byte Register.

The bits of the Status Byte Register are described as follows:

- Bit B0, Measurement Summary Bit (MSB) - Set summary bit indicates that an enabled measurement event has occurred.
- Bit B1 - Not used.
- Bit B2, Error Available (EAV) — Set summary bit indicates that an error or status message is present in the Error Queue.
- Bit B3, Questionable Summary Bit (QSB) - Set summary bit indicates that an enabled questionable event has occurred.
- Bit B4, Message Available (MAV) - Set summary bit indicates that a response message is present in the Output Queue.
- Bit B5, Event Summary Bit (ESB) - Set summary bit indicates that an enabled standard event has occurred.
- Bit B6, Request for Service (RQS)/Master Summary Status (MSS) - Set bit indicates that an enabled summary bit of the Status Byte Register is set.
- Bit B7, Operation Summary Bit (OSB) - Set summary bit indicates that an enabled operation event has occurred.
Depending on how it is used, Bit B6 of the Status Byte Register is either the Request for Service (RQS) bit or the Master Summary Status (MSS) bit:
- When using the serial poll sequence of the Model 2790 to obtain the status byte (a.k.a. serial poll byte), B6 is the RQS bit. See "Serial polling and SRQ," page 11-8, for details on using the serial poll sequence.
- When using the *STB? command (Table 11-2) to read the status byte, B6 is the MSS bit.


## Service request enable register

The generation of a service request is controlled by the Service Request Enable Register. This register is programmed by you and is used to enable or disable the setting of bit B6 (RQS/MSS) by the Status Summary Message bits (B0, B2, B3, B4, B5, and B7) of the Status Byte Register. As shown in Figure 11-3, the summary bits are logically ANDed (\&) with the corresponding enable bits of the Service Request Enable Register. When a set (1) summary bit is ANDed with an enabled (1) bit of the enable register, the logic " 1 " output is applied to the input of the OR gate and, therefore, sets the MSS/RQS bit in the Status Byte Register.

The individual bits of the Service Request Enable Register can be set or cleared by using the *SRE common command. To read the Service Request Enable Register, use the *SRE? query command. The Service Request Enable Register clears when power is cycled or a parameter value of 0 is sent with the $* \operatorname{SRE}$ command ( $*$ SRE 0 ). The commands to program and read the SRQ Enable Register are listed in Table 11-2.

## Serial polling and SRQ

Any enabled event summary bit that goes from 0 to 1 will set bit B6 and generate an SRQ (service request). In your test program, you can periodically read the Status Byte to check if an SRQ has occurred and what caused it. If an SRQ occurs, the program can, for example, branch to an appropriate subroutine that will service the request.

Typically, SRQs are managed by the serial poll sequence of the Model 2790. If an SRQ does not occur, bit B6 (RQS) of the Status Byte Register will remain cleared and the program will simply proceed normally after the serial poll is performed. If an SRQ does occur, bit B6 of the Status Byte Register will set and the program can branch to a service subroutine when the SRQ is detected by the serial poll.

The serial poll automatically resets RQS of the Status Byte Register. This allows subsequent serial polls to monitor bit B6 for an SRQ occurrence generated by other event types. After a serial poll, the same event can cause another SRQ, even if the event register that caused the first SRQ has not been cleared.

The serial poll does not clear MSS. The MSS bit stays set until all Status Byte summary bits are reset.

## SPE, SPD (serial polling)

The SPE, SPD General Bus Command sequence is used to serial poll the Model 2790. Serial polling obtains the serial poll byte (status byte). Typically, serial polling is used by the controller to determine which of several instruments has requested service with the SRQ line.

## Status byte and service request commands

The commands to program and read the Status Byte Register and Service Request Enable Register are listed in Table 11-2. For details on programming and reading registers, see "Programming enable registers," page 11-5 and "Reading registers," page 11-6.

NOTE To reset the bits of the Service Requ.*SRE 0).
Table 11-2
Status byte and service request enable register commands

Command	Description
*STB?	Read Status Byte Register.
*SRE <NRf>	Program the Service Request Enable Register   (0 to 255).
*SRE?	Read the Service Request Enable Register.

Note: *CLS and STATus:PRESet have no effect on the Service Request Enable Register.

## Programming example - set MSS (B6) when error occurs

The second command in the following sequence enables EAV (error available). When an invalid command is sent (line 3), bits B2 (EAV) and B6 (MSS) of the Status Byte Register set to 1 . The last command reads the Status Byte Register. Keep in mind that you have to address the Model 2790 to talk after sending a query command. To determine the exact nature of the error, you will have to read the Error Queue (see "Queues," page 11-21).

```
*CLS ' Clear Error Queue.
*SRE 4 ' Enable EAV.
*XYZ ' Generate error.
*STB? ' Read Status Byte Register.
```


## Serial poll programming example

This example is written specifically for the KPCI-488.2 GPIB card and QuickBasic/ VisualBasic with the appropriate IEEE libraries. Other types of cards and/or languages may have different function calls that are equivalent to the initialize(), transmit(), send(), srq, and spoll() calls used below.

## SRQ when buffer fills with 500, 1000, 1500, and 1750 readings

The following program will store 2000 readings in the buffer. When the buffer fills with 500 readings (quarter full), an SRQ will occur and a message will be displayed on the computer to indicate that event. An SRQ and message will also occur when the 1000th (half full), 1500th (three-quarter full), 1750th (buffer notify), and 2000th (full) reading is stored.

```
' $INCLUDE: 'ieeeqb.bi'
CLS ' Clear PC output screen.
CONST addr = 16 ' Set instrument address.
' Init GPIB.
CALL initialize(21, 0)
CALL transmit("unt unl listen " + STR$(addr) + " sdc unl", status%)' Send Device Clear.
CALL send(addr, "*rst", status%) ' Restore *rst defaults.
CALL send(addr, "trac:cle", status%) ' Clear buffer.
CALL send(addr, "trig:coun inf", status%) ' Infinite trigger count.
CALL send(addr, "trac:poin 2000", status%) ' Set buffer size to 2000.
CALL send(addr, "trac:not 1750", status%) ' Set Trace Notify bit on 1750th reading.
CALL send(addr, "trac:feed:cont next", status%) ' Enable buffer.
CALL send(addr, "stat:pres", status%) ' Reset measure enable bits.
CALL send(addr, "*cls", status%) ' Clear all event registers.
CALL send(addr, "stat:meas:enab 13120", status%) ' Enable buffer bits; B6, B8, B9, B12, B13.
CALL send(addr, "*ese 0", status%) ' Disable standard events.
CALL send(addr, "*sre 1", status%) ' Enable measurement events.
CALL send(addr, "init", status%) ' Start measure/store process.
N = 0
 ' Initialize quarter buffer counter.
WaitSRQ:
```



```
1750thReading: PRINT "1750th reading stored" ' Display 1750th reading message.
GOTO WaitSRQ
Return to WaitSRQ.
```


## Status register sets

As shown in Figure 11-1, there are four status register sets in the status structure of the Model 2790: Standard Event Status, Operation Event Status, Measurement Event Status, and Questionable Event Status.

## Register bit descriptions

## Standard event register

The used bits of the Standard Event Register (Figure 11-4) are described as follows:

- Bit B0, Operation Complete (OPC) - Set bit indicates that all pending selected device operations are completed and the Model 2790 is ready to accept new commands. This bit only sets in response to the *OPC? query command. See Section 12 for details on $* \mathrm{OPC}$ and $* \mathrm{OPC}$ ?.

Figure 11-4

## Standard event status register



- Bit B1 — Not used.
- Bit B2, Query Error (QYE) - Set bit indicates that you attempted to read data from an empty Output Queue.
- Bit B3, Device-Dependent Error (DDE) - Set bit indicates that an instrument operation did not execute properly. Some of the errors specific to the Model 2790 that will set this bit include the following:
- Error +516 : Battery backed RAM error - Data stored in RAM has been lost. Replace the battery if frequent failures occur.
- Error +517: Cannot resume scan - Due to a card ID change, auto scan has disabled. The scan will not resume after a power interruption. For details, see " Auto scan," page 7-21."
- Error +520 : Saved setup scancard mismatch - Settings for a user setup or power-on setup do not match the switching module types presently installed. For details, see "Defaults and user setups," page 1-18.
- Error +523 : Card hardware error - Communication with the microprocessor on a switching module card has been lost.
- Error +524 : Unsupported card detected - The Model 2790 has detected an installed Model 77XX switching module that is not supported by the current version of firmware.
- Bit B4, Execution Error (EXE) — Set bit indicates that the Model 2790 detected an error while trying to execute a command.
- Bit B5, Command Error (CME)
- Bit B6, User Request (URQ) - Set bit indicates that the LOCAL key on the Model 2790 front panel was pressed.
- Bit B7, Power On (PON) - Set bit indicates that the Model 2790 has been turned off and turned back on since the last time this register has been read.


## Operation event register

The bits of the Operation Event Register (Figure 11-5) are described as follows:

- Bits B0 through B3 - Not used.
- Bit B4, Measuring (Meas) - Set bit indicates that the instrument is performing a measurement.
- Bit B5, Triggering (Trig) - Set bit indicates that the Model 2790 is in the trigger layer waiting for a trigger event to occur.
- Bits B6 and B7 - Not used.
- Bit B8, Filter Settled or Disabled (Filt) - Set bit indicates that the filter has settled or the filter is disabled.
- Bit B9 - Not used.
- Bit B10, Idle State (Idle) - Set bit indicates the Model 2790 is in the idle state.
- Bits B11 through B15 - Not used.

Figure 11-5
Operation event register


## Measurement event register

The used bits of the Measurement Event Register (Figure 11-6) are described as follows:

- Bit B0, Reading Overflow (ROF) - Set bit indicates that the reading exceeds the measurement range of the instrument.
- Bit B1, Low Limit 1 Event (LL1) - Set bit indicates that a reading has reached or exceeded Low Limit 1.
- Bit B2, High Limit 1 Event (HL1) - Set bit indicates that a reading has reached or exceeded High Limit 1.
- Bit B3, Low Limit 2 Event (LL2) - Set bit indicates that a reading has reached or exceeded Low Limit 2.
- Bit B4, High Limit 2 Event (HL2) - Set bit indicates that a reading has reached or exceeded High Limit 2.
- Bit B5, Reading Available (RAV) - Set bit indicates that a reading was taken and processed.
- Bit B6, Buffer Notify (BN) - Set bit is a notification that the user-specified number of readings have been stored in the buffer. The TRACe:NOTify command specifies the number of stored readings that will set this bit (see Section 6 for details).
- Bit B7, Buffer Available (BAV) - Set bit indicates that there are at least two readings in the buffer.
- Bit B8, Buffer Half Full (BHF) - Set bit indicates that the trace buffer is half full.
- Bit B9, Buffer Full (BF) - Set bit indicates that the trace buffer is full.
- Bit B10, Buffer Overflow (BOF) - Set bit indicates that the filled buffer has wrapped and written over previously stored readings.
- Bit B11, Hardware Limit Event (HL) - Set bit indicates that a reading has exceeded the hardware limit.
- Bit B12, Buffer Quarter Full (BQF) - Set bit indicates that the trace buffer is one-quarter full.

NOTE Bits B12 (1/4 full) and B13 ( $3 / 4$ full) are not intended to be used with buffer sizes smaller than four readings.

- Bit B13, Buffer Three-Quarter Full (BTF) - Set bit indicates that the trace buffer is three-quarters full.
- Bit B14, Master Limit (ML) - Set bit indicates that one or more of the other limits have been reached or exceeded.
- Bit B15 - Not used.

Figure 11-6

## Measurement event register



ML = Master Limit
BTF $=$ Buffer Three-quarter Full BQF = Buffer Quarter Full
HL = Hardware Limit Event
BOF = Buffer Overflow
$B F=$ Buffer Full

BHF = Buffer Half Full
$B A V=$ Buffer Available BN = Buffer Notify
RAV $=$ Reading Available
HL2 $=$ High Limit 2 Event
LL2 $=$ Low Limt 2 Event

HL1 $=$ High Limit 1 Event LL1 $=$ Low Limit 1 Event ROF = Reading Overflow
\& = Logical AND OR = Logical OR

## Questionable event register

The used bits of the Questionable Event Register (Figure 11-7) are described as follows:

- Bits B0 through B3 - Not used.
- Bit B4, Temperature Summary (Temp) - Temperature summary bit.
- Bits B5 through B7 - Not used.
- Bit B8, Calibration Summary (Cal) — Set bit indicates that an invalid calibration constant was detected during the power-up sequence. The instrument will instead use a default calibration constant. This error will clear after successful calibration of the instrument.
- Bit B9, Slot 1 Interlock Open (Int1)— Set bit indicates that the interlock for the module
in slot 1 is open.
- Bit B10, Slot 2 Interlock Open (Int2)— Set bit indicates that the interlock for the module in slot 2 is open.
- Bits B11 through B13 - Not used.
- Bit B14, Command Warning (Warn) - Set bit indicates that a Signal Oriented Measurement Command parameter has been ignored.
- Bit B15 - Not used.

NOTE Whenever a questionable event occurs, the ERR annunciator will turn on. The annunciator will turn off when the questionable event clears.

Figure 11-7

## Questionable event register



## Condition registers

As Figure 11-1 shows, each status register set (except the Standard Event Register set) has a condition register. A condition register is a real-time, read-only register that constantly updates to reflect the present operating conditions of the instrument. For example, while the Model 2790 is in the idle state, bit B10 (Idle) of the Operation Condition Register will be set. When the instrument is taken out of idle, bit B10 clears.

The commands to read the condition registers are listed in Table 11-3. For details on reading registers, see "Reading registers," page 11-6.

Table 11-3
Condition register commands

Command	Description
STATus:OPERation:CONDition?	Read Operation Condition Register.
STATus:MEASurement:CONDition?	Read Measurement Condition Register.
STATus:QUEStionable:CONDition?	Read Questionable Condition Register.

## Event registers

As Figure 11-1 shows, each status register set has an event register. When an event occurs, the appropriate event register bit sets to 1 . The bit remains latched to 1 until the register is reset. Reading an event register clears the bits of that register. *CLS resets all four event registers.

The commands to read the event registers are listed in Table 11-4. For details on reading registers, see "Reading registers," page 11-6.

Table 11-4
Event register commands

Command	Description
*ESR?	Read Standard Event Status Register.
STATus:OPERation:[:EVENt]?	Read Operation Event Register.
STATus:MEASurement:[:EVENt]?	
STATus:QUEStionable:[:EVENt]?	Read Measurement Event Register.
Read Questionable Event Register.	

Note: Power-up and *CLS resets all bits of all event registers to 0 . STATus:PRESet has no effect.

## Event enable registers

As Figure 11-1 shows, each status register set has an enable register. Each event register bit is logically ANDed (\&) to a corresponding enable bit of an enable register. Therefore, when an event bit is set and the corresponding enable bit is set (as programmed by the user), the output (summary) of the register will set to 1 , which in turn sets the summary bit of the Status Byte Register.

The commands to program and read the event enable registers are listed in Table 11-5. For details on programming and reading registers, see "Programming enable registers," page 11-5 and "Reading registers," page 11-6.

NOTE The bits of any enable register can be reset to 0 by sending the 0 parameter value with the appropriate enable command (i.e. STATus:OPERation:ENABle 0).

Bit 15 of any of the enable registers cannot be set to 1. Attempting to do so will generate a -222, "Parameter data out of range" error.

Table 11-5

## Event enable registers commands

Command	Description
*ESE <NRf>	Program Standard Event Enable Register (0 to 255).
*ESE?	Read Standard Event Enable Register.
STATus:OPERation:ENABle <NRF>	Program Operation Event Enable Register (0 to 65535).
STATus:OPERation:ENABle?	Read enable register.
STATus:MEASurement:ENABle <NRf>	Program Measurement Event Enable Register (0 to 65535).
STATus:MEASurement:ENABle?	Read enable register.
STATus:QUEStionable:ENABle <NRf>	Program Questionable Event Enable Register (0 to 65535).
STATus:QUEStionable:ENABle?	Read enable register.

Note: Power-up and STATus:PRESet resets all bits of all enable registers to 0 . *CLS has no effect.

## Programming example - program and read register set

The following command sequence programs and reads the measurement register set. Keep in mind that the Model 2790 has to be addressed to talk after a query command.

```
STAT:MEAS:ENAB 512 ' Enable BFL (buffer full).
STAT:MEAS:COND? ' Read Measurement Condition Register.
STAT:MEAS? ' Read Measurement Event Register.
```


## Queues

The Model 2790 uses two queues, which are first-in, first-out (FIFO) registers:

- Output Queue - Used to hold reading and response messages.
- Error Queue - Used to hold error and status messages.

The Model 2790 status model (Figure 11-1) shows how the two queues are structured with the other registers.

## Output queue

The Output Queue holds data that pertains to the normal operation of the instrument. For example, when a query command is sent, the response message is placed in the Output Queue.

When data is placed in the Output Queue, the Message Available (MAV) bit in the Status Byte Register sets. A data message is cleared from the Output Queue when it is read. The Output Queue is considered cleared when it is empty. An empty Output Queue clears the MAV bit in the Status Byte Register.

A message is read from the Output Queue by addressing the Model 2790 to talk after the appropriate query is sent.

## Error queue

The Error Queue holds error and status messages. When an error or status event occurs, a message that defines the error/status is placed in the Error Queue.

When a message is placed in the Error Queue, the Error Available (EAV) bit in the Status Byte Register is set. An error/status message is cleared from the Error Queue when it is read. The Error Queue is considered cleared when it is empty. An empty Error Queue clears the EAV bit in the Status Byte Register.

The Error Queue holds up to 10 error/status messages. The commands to read the Error Queue are listed in Table 11-6. When you read a message in the Error Queue, the "oldest" message is read and then removed from the queue. If the queue becomes full, the message "350, 'Queue Overflow"" will occupy the last memory location. On power-up, the Error Queue is empty. When empty, the message " 0 , No Error" is placed in the queue.

Messages in the Error Queue are preceded by a code number. Negative (-) numbers are used for SCPI-defined messages and positive (+) numbers are used for Keithley-defined messages. The messages are listed in the appendices at the end of this manual.

On power-up, all error messages are enabled and will go into the Error Queue as they occur. Status messages are not enabled and will not go into the queue. As listed in Table 11-6, there are commands to enable and/or disable messages. For these commands, the <list> parameter is used to specify which messages to enable or disable. The messages are specified by their codes. The following examples show various forms for using the <list> parameter.

```
<list> = (-110) Single message
 =(-110:-222) Range of messages (-110 through -222)
 =(-110:-222, -220) Range entry and single entry (separated by a comma)
```

When you enable messages, messages not specified in the list are disabled. When you disable messages, each listed message is removed from the enabled list.

NOTE To prevent all messages from entering the Error Queue, send the enable command along with the null list parameter as follows:
STATus:QUEue:ENABle ().
Table 11-6
Error queue commands

Command	Description	Notes
STATus:QUEue:[:NEXT]?	Read and clear oldest error/status (code and message).	1
STATus:QUEue:ENABle <list>	Specify error and status messages for Error Queue.	2
STATus:QUEue:ENABle?	Read the enabled messages.	
STATus:QUEue:DISable <list>	Specify messages not to be placed in queue.	2
STATus:QUEue:DISable?   STATus:QUEue:CLEar	Read the disabled messages.   Clear messages from Error Queue.	
SYSTem:ERRor?	Read Error Queue.   SYSTem:CLEar	Clear messages from Error Queue.

Notes:

1. Power-up and *CLS empties the Error Queue. STATus:PRESet has no effect.
2. Power-up enables error messages and disables status messages. *CLS and STATus:PRESet have no effect.

## Programming example - read error queue

The following command reads the error queue:

Common commands (summarized in Table 12-1) are device commands that are common to all devices on the bus. These commands are designated and defined by the IEEE-488.2 standard.

Table 12-1
IEEE-488.2 common commands and queries

Mnemonic	Name	Description	Ref
*CLS	Clear status	Clears all event registers and error queue.	Sec 11
*ESE <NRf>	Event enable command	Program the standard event enable register.	Sec 11
*ESE?	Event enable query	Read the standard event enable register.	Sec 11
*ESR?	Event status register query	Read the standard event enable register and clear it.	Sec 11
*IDN?	Identification query	Returns the manufacturer, model number, serial number, and firmware revision levels of the unit.	A
*OPC	Operation complete command	Set the operation complete bit in the standard event register after all pending commands have been executed.	B
*OPC?	Operation complete query	Places an ASCII " 1 " into the output queue when all pending selected device operations have been completed.	C
*OPT?	Option query	Returns the model numbers of the switching modules installed in the Model 2790. Returns "NONE" if a slot is empty.	D
*RCL <NRf>	Recall command	Returns Model 2790 to the user-saved setup ( 0 , 1,2 , or 3 ).	E
*RST	Reset command	Returns Model 2790 to the *RST default conditions.	F
*SAV <NRf>	Save command	Saves the present setup as the user-saved setup ( $0,1,2$, or 3 ).	E
*SRE <NRf>	Service request enable command	Programs the service request enable register.	Sec 11
*SRE?	Service request enable query	Reads the service request enable register.	Sec 11
*STB?	Status byte query	Reads the status byte register.	Sec 11
*TRG	Trigger command	Sends a bus trigger to Model 2790.	G
*TST?	Self-test query	Performs a checksum test on ROM and returns the result.	H
*WAI	Wait-to-continue command	Wait until all previous commands are executed.	I

Note: A through I references are on the following pages.

## A *IDN? — identification query Reads identification code

The identification code includes the manufacturer, model number, serial number, and firmware revision levels and is sent in the following format:

KEITHLEY INSTRUMENTS INC., Model 2790, xxxxxxx, yyyyy/zzz
Where: xxxxxxx is the serial number.
yyyyy/zzzzz is the firmware revision levels of the digital board ROM and display board ROM.

## B *OPC-Operation Complete

## Description

After the *OPC command is sent, the Operation Complete bit (bit B0) of the Standard Event Status Register will set immediately after the last pending command is completed. If the corresponding bit (Bit B0) in the Standard Event Enable Register and Bit 5 (Event Summary Bit) of the Service Request Enable Register is set, the RQS/MSS (Request for Service/Master Summary Status) bit in the Status Byte Register will set.

When used with the immediate initiation command (:INITiate), the OPC bit in the Standard Event Status Register will not set until the Model 2790 goes back into the idle state. The :INIT command operation is not considered finished until the Model 2790 goes back into the idle state. See the description for *WAI for more information on command execution.

Programing example - The first group of commands send the *OPC command after the :INITiate command and verifies that the OPC bit in the Standard Event Status Register does not set while the instrument continues to make measurements (not in idle). The second group of commands return the Model 2790 to the idle state and verifies that the OPC bit did set.

```
SYST:PRES ' Returns 2790 to default setup.
INIT:CONT OFF , Disables continuous initiation.
ABORt ' Aborts operation. Places 2790 in idle.
INIT:IMM ' Initiate one trigger cycle.
*OPC , Sends the OPC command.
*ESR? , Reads the Standard Event Status Register.
```

After addressing the Model 2790 to talk, the returned value of 0 denotes that the bit (bit 0 ) is not set indicating that the :INITiate operation is not complete.

```
ABORt ' Aborts operation. Places 2790 in idle.
*ESR? ' Reads the Standard Event Status Register.
```

After addressing the Model 2790 to talk, the returned value of 1 denotes that the bit (bit 1) is set indicating that the :INITiate operation is now complete.

```
SYST:PRES & Returns 2790 to default setup.
```

NOTE The following commands take a long time to process and may benefit from using *OPC or *OPC?:
*RST and SYST:PRES
*RCL and $* S A V$
ROUT:MULT:CLOS and ROUT:MULT:OPEN — Only if the <clist> is long.
CALC2:IMM - Only when performing the standard deviation calculation on a large buffer. A 10,000 point buffer takes around 5.75 seconds.

## C *OPC? - Operation Complete Query

Place a ' 1 ' in the output queue after all pending operations are completed

## Description

When this common command is sent, an ASCII " 1 " will be placed in the Output Queue after the last pending operation is completed. When the Model 2790 is then addressed to talk, the " 1 " in the Output Queue will be sent to the computer.

The " 1 " in the Output Queue will set the MAV (Message Available) bit (B4) of the Status Byte Register. If the corresponding bit (B4) in the Service Request Enable Register is set, the RQS/MSS (Request for Service/Master Summary Status) bit in the Status Byte Register will set.

When used with the Initiate Immediately command (:INITiate), a " 1 " will not be placed into the Output Queue until the Model 2790 goes back into the idle state. The :INIT command operation is not considered finished until the Model 2790 goes back into the idle state. See the description for *WAI for more information on command execution.

The execution of *OPC? is not completed until it has placed the " 1 " in the Output Queue.
Programming example - The following command sequence demonstrates how to use *OPC? to signal the end of a measurement process:

```
SYST:PRES ، Returns 2790 to default setup.
INIT:CONT OFF ، Disables continuous initiation.
ABORt ' Aborts operation. Places 2790 in idle.
TRIG:COUN 1 ' These two commands configure the 2790
SAMP:COUN 5 ' to perform five measurements.
INIT ' Starts measurement process.
*OPC? ' Sends OPC? command.
```

After all five measurements are performed and the instrument returns to the idle state, an ASCII ' 1 ' will be placed in the Output Queue. After addressing the Model 2790 to talk, the ' 1 ' from the Output Queue is sent to the computer.

```
SYST:PRES ، Returns 2790 to default setup.
```

NOTE The following commands take a long time to process and may benefit from using *OPC or *OPC?:
*RST and SYST:PRES
*RCL and SAV
ROUT:MULT:CLOS and ROUT:MULT:OPEN — Only if the <clist> is long.
CALC2:IMM - Only when performing the standard deviation calculation on a large buffer. A 10,000 point buffer takes approximately 5.75 seconds.

## D *OPT? - option query

Query installed switching modules
Use this query command to determine which switching modules are installed in the Model 2790. For example, if a Model 7702 is installed in slot 1 and the other slot is empty, the response message will look like this:
7702, NONE
Note that the model number of an installed pseudocard is returned in the same manner. See Section 2 for details on pseudocards.

## E *SAV <NRf> - save <br> *RCL <NRf> - recall

Parameters $0=$ Memory location 0
1 = Memory location 1
2 = Memory location 2
3 = Memory location 3

Save present setup in memory Return to setup stored in memory

Use the *SAV command to save the present instrument setup configuration in memory for later recall. Any control affected by *RST can be saved by the *SAV command. The *RCL command is used to restore the instrument to the saved setup configuration. Four setup configurations can be saved and recalled. A saved setup is approximately 4 k bytes in size.

Model 2790 ships from the factory with SYSTem:PRESet defaults loaded into the available setup memory. If a recall error occurs, the setup memory defaults to the SYSTem:PRESet values.

NOTE For RS-232 operation, *OPC or *OPC? should be used with *SAV and *RCL, which are slow responding commands. Details on $* O P C$ and $* O P C$ ? are provided in earlier in this section.

## Programming example:

```
*SAV 2 ' Save present setup in memory location 2.
*RST ' Return 2790 to RST defaults.
*RCL 2 ' Return (recall) 2790 to setup stored in memory location 2.
```

F *RST — reset Return Model 2790 to RST defaults
When the *RST command is sent, Model 2790 performs the following operations:

1. Returns Model 2790 to the RST default conditions (see "Default" column of SCPI tables).
2. Cancels all pending commands.
3. Cancels response to any previously received *OPC and *OPC? commands.

NOTE For RS-232 operation, *OPC or *OPC? should be used with *RST, which is a slow responding command. Details on $* O P C$ and $* O P C$ ? are provided earlier in this section.

## G *TRG - trigger

Send bus trigger to Model 2790
Use the *TRG command to issue a GPIB trigger to Model 2790. It has the same effect as a group execute trigger (GET).

Use the *TRG command as an event to control operation. Model 2790 reacts to this trigger if BUS is the programmed arm control source. The control source is programmed from the TRIGger subsystem.

## NOTE Details on triggering are provided in Section 8.

Programming example - The following command sequence configures Model 2790 to be controlled by bus triggers. The last line, which sends a bus trigger, triggers one measurement. Each subsequent bus trigger will also trigger a single measurement.

```
*RST ' Restore RST defaults.
TRIG:SOUR BUS ' Select BUS control source.
TRIG:COUN INF ' Set trigger layer count to infinity.
INIT ' Take 2790 out of idle.
*TRG ' Trigger one measurement.
```


## H *TST? - self-test query

Run self test and read result
Use this query command to perform a checksum test on ROM. The command places the coded result ( 0 or 1 ) in the output queue. When Model 2790 is addressed to talk, the coded result is sent from the output queue to the computer.

A returned value of zero (0) indicates that the test passed and a value of one (1) indicates that the test failed.

## I *WAI - Wait-to-Continue

## Description

Prevent execution of commands until previous commands are completed

Two types of device commands exist:

- Sequential commands - A command whose operations are allowed to finish before the next command is executed.
- Overlapped commands - A command that allows the execution of subsequent commands while device operations of the Overlapped command are still in progress.

Use the *WAI command to suspend the execution of subsequent commands until the device operations of all previous Overlapped commands are finished. The *WAI command is not needed for Sequential commands.

The Model 2790 has three overlapped commands:

- :INITiate
- :INITiate:CONTinuous ON
- *TRG

NOTE See *OPC, *OPC?, and *TRG for more information.
The INITiate commands remove the Model 2790 from the idle state. The device operations of :INITiate are not considered complete until the Model 2790 returns to idle. By sending the *WAI command after the INITiate command, all subsequent commands will not execute until the Model 2790 goes back into idle.

The *TRG command issues a bus trigger that could be used to provide the arm, scan, and measure events for the Trigger Model. By sending the *WAI command after the *TRG command, subsequent commands will not be executed until the pointer for the Trigger Model has finished moving in response to *TRG and has settled at its next state.

Programming example - The following command sequence shows how to use the *WAI command to allow the Model 2790 to wait for the programmed measurements to be completed before requesting a reading.

```
SYST:PRES / Returns 2790 to default setup.
INIT:CONT OFF ، Disables continuous initiation.
ABORt 'Aborts operation. Places 2790 in idle.
TRIG:COUN 1 ' These two commands configure the 2790
SAMP:COUN 30 ، to perform 30 measurements.
INIT ' Starts measurement process.
*WAI ' Sends the WAI command. Program waits for 2790 to go
، into idle before executing next command.
، Requests one reading.
```

13
SCPI Signal Oriented

## Measurement Commands

The signal oriented measurement commands are used to acquire readings. You can use these high level instructions to control the measurement process. These commands are summarized in Table 13-1.

NOTE When measurements are performed, the readings are fed to other enabled operations. Section C explains "Data flow (remote operation)" and provides additional information on using FETCh?, READ?, and MEASure? to acquire readings.

Table 13-1
Signal oriented measurement command summary

Command	Description
CONFigure:<function> [<rang>], [<res>], [<clist>]   FETCh?   READ?   MEASure[:<function>]? [<rang>], [<res>], [<clist>]	Places the Model 2790 in a "one-shot" measurement mode for the specified function.   Requests the latest reading.   Performs an ABORt, INITiate, and a FETCh?.   Performs an ABORt, CONFigure:<function>, and a READ?. (See Note)
Channel list parameter (7702): <clist>= (@SCH)   where: $\mathrm{S}=$ Mainframe slot number (1 or 2)   $\mathrm{CH}=$ Switching module channel numb   Examples: (@101)=Slot 1, Channel 1   (@101, 203) = Slot 1, Channel 1 an   (@101:110) = Slot 1, Channels 1 th	$r$ (must be 2 digits)   Slot 2, Channel 3 ough 10

[^12]NOTE The CONFigure:<function> and MEASure:<function>? commands can be sent without any of the optional parameters (<rang>, <res>, <clist>). For details, see the "Description" for the CONFigure and MEASure commands.

When using the <clist> parameter, it is interpreted as the last parameter. Any parameter after $<$ clist $>$ will generate error - 102 (syntax error).

If only one parameter is used and it is not a <clist>, it is interpreted as the range parameter (<rang>).

If two parameters are used and the second one is not $a<c l i s t>$, the first parameter is the range parameter $(\langle$ rang $\rangle$ ) and the second is the resolution parameter (<res>).

The CONFiguration and MEASure? commands for the TEMPerature and CONTinuity functions do not use the <rang> and <res> parameters. The command is ignored and causes error -108 (parameter not allowed).

The CONFigure and MEASure? commands cannot be used while scanning. The command is ignored and causes error -221 (settings conflict).

## CONFigure:<function> [<rang>], [<res>], [<clist>]

CONFigure:VOLTage[:DC] [<rang>], [<res>], [<clist>] CONFigure:VOLTage:AC [<rang>], [<res>], [<clist>] CONFigure:CURRent[:DC] [<rang>], [<res>], [<clist>] CONFigure:CURRent:AC [<rang>], [<res>], [<clist>] CONFigure:RESistance [<rang>], [<res>], [<clist>] CONFigure:FRESistance [<rang>], [<res>], [<clist>] CONFigure:FREQuency [<rang>], [<res>], [<clist>] CONFigure:PERiod [<rang>], [<res>], [<clist>] CONFigure:TEMPerature [<clist>] CONFigure:CONTinuity [<clist>]

Configure DCV
Configure ACV
Configure DCI
Configure ACI
Configure $\Omega 2$
Configure $\Omega 4$
Configure FREQ
Configure PERIOD
Configure TEMP
Configure CONT

Parameters <rang>= Range parameter for the specified function. For example for DCV, range parameter value 10 selects the 10 V range. See the "NOTES" that follow Table 13-1 for additional information.

<res> $=$	0.1	i.e., 100.0 V ( $311 / 2$ digits)
	0.01	i.e., $10.00 \mathrm{~V}\left(3^{1 ⁄ 2}\right.$ digits)
	0.001	i.e., 1.000 V ( $3^{1 ⁄ 2}$ digits)
	0.0001	i.e., $1.0000 \mathrm{~V}(4112$ digits)
	0.00001	i.e., $1.00000 \mathrm{~V}(51 / 2$ digits $)$
	0.000001	i.e., $1.000000 \mathrm{~V}(61 / 2$ digits)

The display will default to 3112 digits when using parameter values that attempt to set the display below $3^{1 ⁄ 2}$ digits. For example, a 10 V reading using $<$ res $>=0.1$ for the 10 V range is displayed as 10.00 V , not 10.0 V .

A command using parameter values that attempt to set the display above $71 / 2$ digits is ignored and generates error -221 (settings conflict error).

The <res> parameter is ignored when a 7702 <clist> is included in the command string. Resolution for the scanlist channel(s) is determined by the present setting for the specified function and by the present resolution setting for the specified function.

See the "NOTES" that follow Table 13-1 for additional information.
<clist> $=$ Channel(s) in the 7702 scanlist to be configured. When the channel list parameter (<clist>) is included, the present instrument settings are not affected. Instead, the channel(s) in the $<$ clist> for the specified function is configured. See the "NOTES" that follow Table 13-1 for additional information.

Query	CONFigure? Query the selected function.
Description	<clist> included - When the <clist> parameter is included with CONFigure command, the specified channel(s) for the 7702 scanlist assumes the *RST default settings for the specified function. Range can also be set for the channel(s) by including the <rang> parameter. If the resolution parameter (<res>) is included, it will be ignored.
	The present measurement function and the trigger model settings are not affected when the CONFigure command is sent with the <clist> parameter.
	<clist> not included - When the <clist> parameter is not included, the CONFigure command configures the instrument for subsequent measurements on the specified function. Range and resolution can also be set for the specified function.
	This command places the instrument in a "one-shot" measurement mode. You can then use the READ? command to trigger a measurement and acquire a reading (see READ?).
	When this command is sent without the <clist> parameter, the Model 2790 will be configured as follows:

- The function specified by this command is selected. If specified, range and/or resolution are also set.
- All controls related to the selected function are defaulted to the *RST values.
- Continuous initiation is disabled (INITiate:CONTinuous OFF).
- The control source of the Trigger Model is set to Immediate.
- The count values of the Trigger Model are set to one.
- The delay of the Trigger Model is set to zero.
- The Model 2790 is placed in the idle state.
- All math calculations are disabled.
- Buffer operation is disabled. A storage operation presently in process will be aborted.
- Autozero is enabled.


## Programming examples:

Programming example \#1 — The following command configures scanlist channels 101 through 105 for 4-wire resistance measurements on the $1 \mathrm{M} \Omega$ range.

```
CONF:FRES 1e6, (@101:105)
```

Programming example \#2 - The following command selects the DCV function, 10 V range, $31 / 2$ digit resolution, and performs the "no <clist>" CONFigure operations:

## FETCh?

Description This command requests the latest post-processed reading. After sending this command and addressing the Model 2790 to talk, the reading is sent to the computer. This command does not affect the instrument setup.
This command does not trigger a measurement. The command simply requests the last available reading.
FETCh? can also be used to return more than one reading. When returning more than one reading, the readings are automatically stored in the buffer.
In order to return multiple reading strings, continuous initiation must be disabled (INIT:CONT OFF) so that the sample count (SAMPle:COUNt), which specifies the number of measurements to be performed, can be set $>1$. After INITiate is sent to trigger the measurements, FETCh? will return the reading strings.
FETCh? is automatically asserted when the READ? or MEASure? command is sent.

NOTE FETCh? can repeatedly return the same reading. Until there is a new reading, this command continues to return the old reading.

When an instrument setting that is relevant to the readings in the sample buffer is changed, the FETCh? command will cause error -230 (data corrupt or stale) or a bus time-out to occur. To get FETCh? working again, a new reading must be triggered.

## READ?

Description This command is typically used with the instrument in the "one-shot" measurement mode to trigger and acquire a specified number of readings. The SAMPle:COUNt command is used to specify the number of readings (see Trigger Subsystem). Note that with sample count $>1$, the readings are stored in the buffer.
When this command is sent, the following commands execute in the order they are presented:
ABORt
INITiate
FETCh?
When ABORt is executed, the instrument goes into the idle state if continuous initiation is disabled. If continuous initiation is enabled, the operation re-starts at the beginning of the Trigger Model.
If the instrument is in the idle state, INITiate takes the instrument out of the idle state. If continuous initiation is enabled, (INITiate:CONTinuous ON), then the INITiate command generates error -213 (init ignored).

NOTE If continuous initiation is enabled, the READ? command will generate error - 213 (init ignored). It can be disabled by sending INITiate:CONTinuous OFF. The *RST command can also be used to disable continuous initiation. It also places the Model 2790 in the "one-shot" measurement mode:
*RST 'Disable continuous initiation and place 2790 in "one-shot" mode. READ? 'Trigger and return one reading.

NOTE When readings are stored in the buffer by the TRACe command (or by front panel data store operation), INIT and multi-sample READ? queries are locked out. With readings in the buffer that were stored in that manner, you cannot use the INIT or READ? command if sample count is $>1$ (error -225, out of memory). Buffer operation is covered in Section 6.

The buffer of the Model 2790 is nonvolatile. Therefore, readings stored in the buffer are not lost when the instrument is turned off or when *RST or SYSTem:PRESet is sent. When writing test programs that perform multi-sample measurements (SAMPle:COUNTt $>1$ ), you may want to add the TRACe:CLEar command at the beginning to clear the buffer. However, be careful not to inadvertently clear stored readings that are needed.

## MEASure:<function>? [<rang>], [<res>], [<clist>]

MEASure:VOLTage[:DC]? [<rang>], [<res>], [<clist>] MEASure:VOLTage:AC? [<rang>], [<res>], [<clist>] MEASure:CURRent[:DC]? [<rang>], [<res>], [<clist>] MEASure:CURRent:AC? [<rang>], [<res>], [<clist>] MEASure:RESistance? [<rang>], [<res>], [<clist>] MEASure:FRESistance? [<rang>], [<res>], [<clist>] MEASure:FREQuency? [<rang>], [<res>], [<clist>] MEASure:PERiod? [<rang>], [<res>], [<clist>] MEASure:TEMPerature? [<clist>] MEASure:CONTinuity? [<clist>]

Measure DCV
Measure ACV
Measure DCI
Measure ACl
Measure $\Omega 2$
Measure $\Omega 4$
Measure FREQ
Measure PERIOD
Measure TEMP
Measure CONT

Parameters <rang> = Range parameter for the specified function. For example for DCV, range parameter value 10 selects the 10 V range. See the "NOTES" that follow Table 13-1 for additional information.

$\langle$ res $>=$	0.1	i.e., $100.0 \mathrm{~V}(31 / 2$ digits $)$
	0.01	i.e., $10.00 \mathrm{~V}\left(3^{1} / 2\right.$ digits $)$
	0.001	i.e., $1.000 \mathrm{~V}\left(3^{1 / 2}\right.$ digits $)$
	0.0001	i.e., $1.0000 \mathrm{~V}\left(4^{1} 2\right.$ digits $)$
	0.00001	i.e., $1.00000 \mathrm{~V}\left(5^{1 / 2}\right.$ digits $)$
	0.000001	i.e., $1.000000 \mathrm{~V}\left(6^{1} / 2\right.$ digits $)$

The resolution of the <res> parameter value and the selected range sets the number of display digits. As shown above, with the 100 V range selected and <res> $=0.1$, a 100 V reading will be displayed as 100.0 V ( $31 / 2$ digits).

The display will default to $31 / 2$ digits when using parameter values that attempt to set the display below $3 \int$ digits. For example, a 10 V reading using $\langle$ res $\rangle=0.1$ for the 10 V range is displayed as 10.00 V , not 10.0 V .

A command using parameter values that attempt to set the display above $71 / 2$ digits is ignored and generates error - 221 (settings conflict error).
See the "NOTES" that follow Table 13-1 for additional information.
<clist> = Single channel only. When included, this is the channel to be closed and measured.

# Description The MEASure? command combines all of the other signal oriented measurement commands to perform a "one-shot" measurement and acquire the reading. If the <clist> parameter is included, the specified channel will close before performing the measurement. <br> When a MEASure? command is sent, the specified function is selected. If specified, range and resolution will also set. All other instrument settings related to the selected function are reset to the $*$ RST defaults. <br> NOTE If a function is not specified, the command executes as if the present function is specified. For example, assume the $\Omega 2$ function is presently selected. When MEAS? is sent, the instrument resets to the *RST defaults for the $\Omega 2$ function and then performs a measurement. 

When this command is sent, the following commands execute in the order that they are presented:
ABORt
CONFigure:<function>
READ?
When ABORt is executed, the instrument goes into the idle state if continuous initiation is disabled. If continuous initiation is enabled, the operation re-starts at the beginning of the Trigger Model.
When CONfigure is executed, the MEASure? parameters (<rang>, <res>, and <clist>) are executed and the instrument goes into the "oneshot" measurement mode. It is similar to sending the CONFigure command with no <clist> parameter. See CONFigure for more details.
When READ? is executed, its operations will then be performed. In general, another ABORt is performed, then an INITiate, and finally a FETCh? to acquire the reading. See READ? for more details.
Programming examples:
Programming example \#1 - The following command measures DCV on channel 101 using the 10 V range with $31 / 2$ digit display resolution: MEAS:VOLT? 10, 0.01, (@101)
Programming example \#2 - The following command measures DCV on the 100 V range:
MEAS: VOLT? 100

## FORMat and Miscellaneous

 SYSTem Commands- FORMat commands - Covers the SCPI commands to configure the format for readings that are sent over the bus.
- Miscellaneous SYSTem commands - Covers miscellaneous SYSTem commands.


## FORMat commands

The commands in this subsystem are used to select the format for transferring data (Table 14-1) over the bus.

Table 14-1
SCPI commands - data format

Command	Description	Default
FORMat[:DATA] <type>[,<length>]	Specify data format; ASCii, SREal, REAL, 32, DREal, or REAL, 64.	ASCii
FORMat:ELEMents <item list>	Specify data elements; READing, UNITs, TSTamp, RNUMber, CHANnel, or LIMits.	(Note 1)
FORMat:BORDer <name>	Specify byte order; NORMal or SWAPped.	(Note 2)

1. All except RNUM and LIM.
2. *RST default is NORMal. SYSTem:PRESet default is SWAPped.

## FORMat[:DATA] <type>[,<length>]

Parameters | ASCii | $=$ ASCII format |  |
| :--- | :--- | :--- |
| SREal | = Binary IEEE-754 single precision format |  |
|  | REAL, 32 | = Binary IEEE-754 single precision format |
|  | DREal | = Binary IEEE-754 double precision format |
|  | REAL, 64 | $=$ Binary IEEE-754 double precision format |

NOTE <length> is not used for the ASCii, SREal, or DREal parameters.
The response to READ?, FETCh?, MEASure?, TRACe:DATA?, CALC1:DATA?, or CALC2:DATA? over the GPIB can be returned in either the ASCii or binary format. All other queries are returned in ASCii, regardless of the selected format. Over the RS-232 interface, only the ASCII format is allowed.

NOTE Regardless of which data format for output strings is selected, the instrument will only respond to input commands using the ASCII format.

## ASCII data format

The ASCII data format is in a direct readable form for the operator. Most programming languages easily convert ASCII mantissa and exponent to other formats. However, some speed is compromised to accommodate the conversion. Figure 14-1 shows an example ASCII string that includes all the data elements. See "FORMat:ELEMents <item list>," page 14-6, for information on the data elements.

Figure 14-1 also shows the byte order of the data string. Data elements not specified by the :ELEMents command are simply not included in the string.

Figure 14-1

## ASCII data format



Units:
VDC = DC Volts HZ = Frequency
VAC $=$ AC Volts $\quad$ SECS $=$ Period
ADC $=$ DC Current $\quad \mathrm{C}=$ Temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{AAC}=\mathrm{AC}$ Current $\mathrm{F}=$ Temperature in ${ }^{\circ} \mathrm{F}$
$\mathrm{OHM}=2$-Wire Resistance or Continuity $\mathrm{K}=$ Temperature in ${ }^{\circ} \mathrm{K}$
OHM4W = 4-Wire Resistance
*An overflow reading is displayed as +9.9 E 37 with no limits.

## IEEE-754 single precision format

REAL, 32, or SREal will select the binary IEEE-754 single precision data format.
Figure 14-2A shows the normal byte order format for each data element. For example, if three data elements are selected, the data string for each reading conversion is made up of three 4-byte data blocks. Note that the data string for each reading conversion is preceded by a 2-byte header that is the binary equivalent of an ASCII \# sign and 0. Figure 14-2 does not show the byte for the terminator that is attached to the end of each data string. Note that the byte order of the data string can be sent in reverse order (see "FORMat:BORDer <name>," page 14-7).

REAL, 64, or DREal selects the binary IEEE-754 double precision data format and is shown in Figure 14-2B (normal byte order shown). This format is similar to the single precision format except that it is 64 bits long.

Figure 14-2
IEEE-754 data formats


Normal byte order shown. For swapped byte order, bytes sent in reverse order: Header, Byte 4, Byte 3, Byte 2, Byte 1.

The Header is only sent once for each measurement conversion.
A. Single precision data format ( $\mathbf{3 2}$ data bits)


Bytes 3, 4, 5, and 6 not shown.
$\mathrm{s}=\operatorname{sign}$ bit $(0=$ positive, $1=$ negative $)$
$\mathrm{e}=$ exponent bits (11)
$\mathrm{f}=$ fraction bits (52)
Normal byte order shown. For swapped byte order, bytes sent in reverse order: Header, Byte 8, Byte 7 -- Byte 1.

The Header is only sent once for each measurement conversion.

## B. Double precision data format ( 64 data bits)

## FORMat:ELEMents <item list>


The specified elements are included in the data string in response to FETCh?, READ?, MEASure?, and TRACe:DATA?. Note that each element in the item list must be separated by a comma (i.e. send "FORMat:ELEMents READing, UNITs, TSTamp, RNUMber, CHANnel, LIMits" to include all elements in the data string). The elements for the ASCii format are shown in Figure 14-1.

An overflow reading is returned as +9.9 E 37 . When a specified data element has invalid data associated with it, NAN (Not A Number) will be the response. NAN is returned as +9.9E37.

Timestamp - Timestamp references the returned data string to a point in time. There are two timestamps: relative and real-time clock. The following command selects the timestamp:

```
SYSTem:TSTamp:TYPE <name> ' Select timestamp type; RELative or RTCL.
```

NOTE The real-time clock timestamp can only be returned for the ASCII data format. For the binary formats, timestamp will not be sent with the real-time clock selected.

The relative timestamp operates as a timer that starts at zero seconds when the instrument is turned on, or when the relative timestamp is reset (SYSTem:TSTamp:RELative:RESet). After $99,999.99$ seconds, the timer resets back to zero and starts over.

For buffer readings recalled from the front panel, the relative timestamp is referenced to the first reading stored in the buffer (absolute format) which is timestamped at 0 seconds and to the time between each stored reading (delta format). For remote programming, you can only return the absolute or delta timestamp. The following command is used to select relative timestamp format for the buffer:

TRACe:TSTamp:FORMat ' Select timestamp format; ABSolute or DELTa.
Reading number - The reading counter starts at zero when the Model 2790 is turned on. When returning buffer readings using TRACe:DATA?, each reading will be referenced to the first reading, which is \#0. The following command will reset the counter:

Channel number - The channel number indicates the switching module channel for the reading. Channel number 000 indicates that no system channel was closed.

Limits - For the ASCII data format, limit test results are returned as a 4-bit binary number "abcd" where:
$\mathrm{a}=$ High limit 2
b = Low limit 2
$\mathrm{c}=$ High limit 1
$\mathrm{d}=$ Low limit 1
A " 0 " indicates that the limit has passed, while a " 1 " indicates that the limit has failed.
For the binary data formats, the limits information must be decoded from the returned value (0 to 15). Convert the value to its binary equivalent for "abcd" where "d" is the LSD and " a " is the MSD. For example, the value 10 converted to its binary equivalent is 1010 . That means High Limit 2 and High Limit 1 have failed.

## FORMat:BORDer <name>

$\begin{array}{ll}\text { Parameters } & \begin{array}{l}\text { NORMal }\end{array}=\text { Normal byte order for IEEE-754 binary format } \\ \text { SWAPped } & =\text { Reverse byte order for IEEE-754 binary format }\end{array}$
For normal byte order, the data format for each element is sent as follows:

Byte 1	Byte 2	Byte 3	Byte 4	(Single precision)
Byte 1	Byte 2	$\ldots$	Byte 8	(Double precision)

For reverse byte order, data is sent as follows:

Byte 4	Byte 3	Byte 2	Byte 1	(Single precision)
Byte 8	Byte 7	$\ldots$	Byte 1	(Double precision)

The "\#0" header (Figure 14-2) is not affected by this command. The header is always sent at the beginning of the data string for each measurement conversion.

The ASCII data format can only be sent in the normal byte order. The SWAPped selection is ignored when the ASCII format is selected.

> NOTE The SWAPped byte order must be used when transmitting binary data to any IBM PC.

## Miscellaneous SYSTem commands

SYSTem commands not covered in other sections of the manual are documented here.
Table 15-8 lists all SYSTem commands and provides references on where to find more information.

## SYSTem:PRESet

Returns the instrument to states optimized for front panel operation. SYSTem:PRESet defaults are listed in the SCPI tables in Section 15.

NOTE For RS-232 operation, *OPC or *OPC? should be used with SYST:PRES, which is a slow responding command. Details on $* O P C$ and $* O P C$ ? are provided in Section 12.

## SYSTem:VERSion

Read the version of the SCPI standard being used by Model 2790. Example response message: 1996.0.

## SYSTem:KEY <NRf>

Parameters $1=$ SHIFT key
$2=$ DCV key
$15=$ Cursor right arrow key
3 = ACV key
16 = TEMP key
4 = DCI key
5 = ACI key
17 = LOCAL key
$6=\Omega 2$ key
$7=\Omega 4$ key
$8=$ FREQ key
9 = -------
$10=$
-------
$11=$ RANGE up arrow key
$12=$ AUTO key
$13=$ RANGE down arrow key
14 = ENTER key
$18=$ EX TRIG key
$19=$ TRIG key
$20=$ STORE key
$21=$ RECALL key
$22=$ FILTER key
$23=$ REL key
$24=$ Cursor left arrow key
$25=$-------
$26=$ OPEN key
27 = CLOSE key
$28=$ STEP key
$29=$ SCAN key
$30=$ DIGITS key
$31=$ RATE key
$32=$ EXIT key

This command is used to simulate front panel key presses. For example, to select the volts measurement function, send the following command to simulate pressing the "DCV" key: SYSTem:KEY 2. The key-press codes are also shown in Figure 14-3.

The :KEY? command returns the key code for the last "pressed" key using the :KEY $<$ NRf $>$ command. It does not return the last key actually pressed by the operator.

## SYSTem:BEEPer[STATe] <b>

You can disable the beeper for limits and continuity tests. However, when limits or CONT is again selected, the beeper will automatically enable.

$$
\text { Parameters } \quad<\quad<\mathrm{b}>=0 \quad \begin{array}{ll}
\text { Disable beeper } \\
& \\
& =1
\end{array} \begin{aligned}
& \text { Enable beeper }
\end{aligned}
$$

Figure 14-3
Key-press codes


15
SCPI Reference Tables

## Reference tables

Table 15-1 through Table 15-11 summarize the commands to operate the Model 2790 and Model 7751, 7752, and 7702 switching modules.

NOTE The <clist> parameters listed in the following tables are used to configure scan channels of a 7702 switching module.

Table 15-1 - CALCulate command summary
Table 15-2 - DISPlay command summary
Table 15-3 - FORMat command summary
Table 15-4 - ROUTe command summary
Table 15-5 - SENSe command summary
Table 15-6 - SOURce command summary
Table 15-7 - STATus command summary
Table 15-8 - SYSTem command summary
Table 15-9 - TRACe command summary
Table 15-10 - Trigger command summary
Table 15-11 - UNIT command summary
General notes:

- Brackets ([ ]) are used to denote optional character sets. These optional characters do not have to be included in the program message. Do not use brackets in the program message.
- Angle brackets ( $<\gg$ ) are used to indicate parameter type. Do not use angle brackets in the program message.
- The Boolean parameter $(\langle b\rangle)$ is used to enable or disable an instrument operation. 1 or ON enables the operation and 0 or OFF disables the operation.
- Upper case characters indicate the short-form version for each command word.
- Default Parameter - Listed parameters are both the *RST and SYSTem:PRESet defaults, unless noted otherwise. Parameter notes are located at the end of each table.
- Ref - The reference column indicates where to find detailed information on the command(s).
- SCPI — A checkmark ( $\checkmark$ ) indicates that the command and its parameters are SCPI confirmed. An unmarked command indicates that it is a SCPI command, but does not conform to the SCPI standard set of commands. It is not a recognized command by the SCPI consortium. SCPI confirmed commands that use one or more non-SCPI parameters are explained by notes.
- CALCulate, SENSe, and UNIT subsystem commands associated with DCV, 2-wire ohms, and 4-wire ohms functions can use optional Mn parameter in <clist> with memory patterns (firmware A04 and higher). See "Memory patterns," page 2-36.

Table 15-1
CALCulate command summary

Command	Description	Default parameter	Ref	SCPI
CALCulate[1]	Subsystem to control CALC 1:		Sec 5	$\checkmark$
:FORMat <name>	Select math format; NONE, MXB (mX+b),	PERCent		$\checkmark$
[<, clist>]	RECiprocal ( $\mathrm{m} / \mathrm{X}+\mathrm{b}$ ), PERCent, S1Iohms, S2Iohms, S1Vohms, or S2Vohms.			
:FORMat? [<clist>]	Query math format.			$\checkmark$
:KMATh	Path to configure math calculations:			
:MMFactor <NRf> [, <clist>]	Set " $m$ " factor for $m X+b$ and $m / X+b$ $(-4294967295$ to +4294967295$) .{ }^{1}$	1		
:TRACk <b>	Enable or disable source tracking.	OFF		
:TRACk?	Query state of source tracking.			
:SOURce <name>	Selects source to be tracked; NONE, S1ISource, S1VSource, S2ISource, S2VSource.	NONE		
:SOURce?	Query source to be tracked.			
:MA1Factor <NRf> [, <clist>]	Set " $m$ " factor for $m X+b$ and $m / X+b$ $(-4294967295$ to +4294967295$) .{ }^{1}$	1		
:MMFactor? [<clist>]	Query " m " factor. ${ }^{1}$			
:MA1Factor? [<clist>]	Query " m " factor. ${ }^{1}$			
:MBFactor <NRf> [, <clist>]	Set "b" factor for mX+b and m/X+b $(-4294967295$ to +4294967295$) .{ }^{2}$	0		
:MA0Factor <NRf> [, <clist>]	Set "b" factor for $\mathrm{mX}+\mathrm{b}$ and $\mathrm{m} / \mathrm{X}+\mathrm{b}$ $(-4294967295$ to +4294967295$) .{ }^{2}$	0		
:MBFactor? [<clist>]	Query "b" factor. ${ }^{2}$			
:MA0Factor? [<clist>]	Query "b" factor. ${ }^{2}$			
:MUNits <char>	Specify units for $m \mathrm{X}+\mathrm{b}$ and $\mathrm{m} / \mathrm{X}+\mathrm{b}$ reading. ${ }^{3}$	'X'		
:MUNits?	Query mX+b and m/X+b units.			
:PERCent < NRf> [, <clist>]	Set target value for PERCent calculation (-4294967295 to +4294967295).	1		
:ACQuire	Use input signal as target value.			
:PERCent? [<clist>]	Query percent.			
:STATe <b> [, <clist>]	Enable or disable kmath calculation.	(Note 4)		$\checkmark$
:STATe? [< clist>]	Query state of kmath function.			$\checkmark$
:DATA?	Read result of kmath calculation.			$\checkmark$

7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2) and CH = Switching module channel number.
$7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)$ (see "Memory patterns," page 2-36).

Table 15-1 (cont.)
CALCulate command summary

Command	Description	Default parameter	Ref	SCPI
CALCulate2	Subsystem to control CALC 2:		Sec 6	$\checkmark$
:FORMat <name>	Select math format: (MEAN, SDEViation, MAXimum, MINimum, PKPK, or NONE).	NONE		$\checkmark$
:FORMat?	Query math format.			$\checkmark$
:STATe <b>	Enable or disable calculation.	(Note 4)		$\checkmark$
:STATe?	Query state of math function.			$\checkmark$
:IMMediate	Recalculate raw input data in buffer.			$\checkmark$
:IMMediate?	Perform calculation and read result.			$\checkmark$
:DATA?	Read math result of CALC 2.			$\checkmark$
CALCulate 3	Subsystem to control CALC 3 (limit test):		Sec 9	$\checkmark$
:MLIMit	Path for master limit command:			
:LATChed <b>	Enable or disable master limit latch.	OFF		
:OUTPut	Path for limit output commands:			
[:STATe] <b>	Enable or disable limit outputs.	OFF		
[:STATe]?	Query state of limit outputs.			
:PULSe	Path to control limit output pulsing:			
[:STATe] <b>	Enable or disable limit output pulsing.	OFF		
[:STATe]?	Query state of limit output pulsing.			
:TIME <NRf>	Set output pulse time in sec ( 0.001 to 99999.999).	0.002		
:TIME?	Query output pulse time.			
:LSENse <name>	Set logic sense of all limit lines (AHIGh or ALOW).	AHIGh		
:LSENse?	Query logic sense of limit lines.			
:LIMit1	Path to control LIMIT 1 test:			$\checkmark$
:UPPer	Path to configure upper limit:			$\checkmark$
[:DATA] <n> [, <clist>]	Set upper limit (-4294967295 to +4294967295).	1		$\checkmark$
[:DATA]? [<clist>]	Query upper limit.			$\checkmark$
:LOWer	Path to configure lower limit:			$\checkmark$
[:DATA] <n> [, <clist>]	Set lower limit (-4294967295 to +4294967295).	-1		$\checkmark$
[:DATA]? [<clist>]	Query lower limit.			$\checkmark$
:STATe <b>	Enable or disable limit test.	OFF		$\checkmark$
[, <clist>]				
:STATe? [<clist>]	Query state of limit test.			$\checkmark$
:FAIL?	Query test result ( $1=$ failing $)$.			$\checkmark$

Table 15-1 (cont.)
CALCulate command summary

Command	Description	Default parameter	Ref	SCPI
CALCulate 3   :LIMitl				
:CLEAR	Path to clear events:			$\checkmark$
[:IMMediate]	Clear high and low events.			$\checkmark$
:AUTO <b>	Enable or disable auto-clear.	ON		$\checkmark$
:AUTO?	Query auto-clear.			$\checkmark$
:LIMit2	Path to control LIMIT 2 test:			$\checkmark$
:UPPer	Path to configure upper limit:			$\checkmark$
[:DATA] <n> [, <clist>]	Set upper limit (-4294967295 to +4294967295).	2		$\checkmark$
[:DATA]? [<clist>]	Query upper limit.			$\checkmark$
:LOWer	Path to configure lower limit:			$\checkmark$
[:DATA] <n> [, <clist>]	Set lower limit (-4294967295 to +4294967295).	-2		$\checkmark$
[:DATA]? [<clist>]	Query lower limit.			$\checkmark$
:STATe <b>	Enable or disable limit test.	OFF		$\checkmark$
[, <clist>]				
:STATe? [<clist>]	Query state of limit test.			$\checkmark$
:FAIL?	Query test result ( $1=$ failing).			$\checkmark$
:CLEAR	Path to clear events:			$\checkmark$
[:IMMediate]	Clear high and low events.			$\checkmark$
:AUTO <b>	Enable or disable auto-clear.	ON		$\checkmark$
:AUTO?	Query auto-clear.			$\checkmark$

Notes:

1. The :MMFactor and :MA1Factor commands perform the same operations.
2. The :MBFactor and :MA0Factor commands perform the same operations.
3. For $m X+b$ and $m / X+b$ units, <char> = one character; 'A' through ' $Z$ ', degrees symbol ( ${ }^{\circ}{ }^{\circ}$ '), or ohms symbol (' $\Omega$ ').
4. ON is the *RST default parameter and OFF is the SYSTem:PRESet default.

Table 15-2
DISPlay command summary

Command	Description	Default   parameter	Ref	SCPI
DISPlay		(see Note)	Sec 1	
[:WINDow[1]]				$\checkmark$
:TEXT	Path to control user text messages.		$\checkmark$	
:DATA <a>	ASCII message "a" (up to 12 characters).	(none)		$\checkmark$
:DATA?	Query text message.			$\checkmark$
:STATe <b>	Enable or disable message mode.	OFF		$\checkmark$
:STATe?	Query text message state.			$\checkmark$
:ENABle <b>	Enable or disable the front panel display.	ON		$\checkmark$
:ENABle?	Query state of the display.			$\checkmark$

Note: *RST and SYSTem:PRESet have no effect on commands in this subsystem. The listed defaults are power-on defaults.

Table 15-3
FORMat command summary

Command	Description	Default parameter	Ref	SCPI
FORMat			Sec 14	
[:DATA] <type> [,<length>]	Select data format (ASCii, SREal, or DREal).	ASCii		
[:DATA]?	Query data format.			$\checkmark$
:ELEMents <item list>	Specify data elements (READing, CHANnel, UNITs, RNUMber, TSTamp, and LIMits).	(see Note)		$\checkmark$
:ELEMents?	Query data elements.			$\checkmark$
:BORDer <name>	Select binary byte order (NORMal or SWAPped).	SWAPped		$\checkmark$
:BORDer?	Query byte order.			$\checkmark$

[^13]Table 15-4
ROUTe command summary

Command	Description	Default parameter	Ref	SCPI
ROUTe				
:MONitor <clist>	Specify one channel to be monitored (7702 only).		Sec 7	
:STATe <b>	Enable or disable channel monitoring.	OFF		
:STATe?	Query state of channel monitoring.			
:DATA?	Returns the most recent monitor reading.			
:POINts <NRf>	For a monitor scan, specify number of channels to scan (2 to 55000).	(Note 1)		
:POINts?	For a monitor scan, query number of channels to scan.			
:MONitor?	Query the channel to be monitored.			
:CLOSe <clist>	Close the one specified 7702 channel (all others will open).		Sec 2	
:STATe? <clist>	Query closed channels in specified list; 1 = closed.			
:ACONfigure <b>	Enable or disable auto-configure.	(Note 2)		
:ACONfigure?	Query state of auto-configure.			
:COUNt? <clist>	Query closure count for specified channels.		Sec 2	
:INTerval <NRf>	Set count update interval in minutes (10 to 1440).	(Note 3)		
:INTerval?	Query relay count update interval.			
:CLOSe?	Returns a <clist> of closed channels.			
:OPEN:ALL	Open all channels.		Sec 2	
:MULTiple	Path to control multiple channels:		Sec 2	
:OPEN <clist>	Open channel(s) specified in list. Unlisted channels not affected.			
:CLOSe <clist>	Close channel(s) specified in list. Unlisted channels not affected.			
:STATe? <clist>	Query closed channels in specified list; 1 = closed.			
:CLOSe?	Return list of all closed channels.			

Notes:

1. Default value depends on which switching module is installed.
2. Not affected by *RST and SYSTem:PRESet. Front panel factory default is OFF.
3. Not affected by *RST and SYSTem:PRESet. Interval set to 15 minutes at the factory.
4. Memory patterns available in firmware revision A04 and higher. 40 memory locations available.
5. Memory pattern locations not affected by *RST or SYSTtem:PRESet. Use ROUT:MEM:CLE to clear memory.

Table 15-4 (cont.)
ROUTe command summary

Command	Description	Default parameter	Ref	SCPI
:ROUTe	ROUTe subsystem (continued):			
:SCAN	Path to configure scan (7702 only):		Sec 7	$\checkmark$
[:INTernal] <clist>	Specify list of channels to be scanned.			$\checkmark$
[:INTernal]?	Query scan list.			$\checkmark$
:TSOurce <list>	Select trigger source to start the scan (IMM, or HLIM1, HLIM2, LLIM1, and LLIM2).	IMM		
:TSOurce?	Query trigger source for scan.			
:NVOLatile <b>	Enable or disable nonvolatile memory for scanning (autoscan).	(Note 2)		
:NVOLatile?	Query nonvolatile memory setting.			
:LSELect <name>	Enable (INTernal) or disable (NONE) scan.	NONE		
:LSELect?	Query state of scan.			
:MEMory	Path to memory pattern commands:	(Note 4)	Sec 2	
[:CHANnels] <n>,<clist>	Define channel pattern for memory location <n> (1-40).	(Note 5)		
[:CHANnels]?<n>	Query channel pattern for memory <n>.			
:SOURce				
:LEVel <n>,<NRf>, <clist>	Assign source values to channels.	(Note 5)		
:LEVEL? <n>	Query source values.			
:DELay <n>, <NRf>	Assign a variable delay to memory < $\mathrm{n}>$.	(Note 5)		
:DELay? <n>	Query delay from memory <n>.			
:RECall <n>	Execute memory pattern <n>.			
:READ				
[:STATe] <n>, <b>	Enable/disable reading for memory <n>.	(Note 5)		
:CLEar <n>	Clear out memory pattern $<\mathrm{n}>$.			

## Notes:

1. Default value depends on which switching module is installed.
2. Not affected by *RST and SYSTem:PRESet. Front panel factory default is OFF.
3. Not affected by *RST and SYSTem:PRESet. Interval set to 15 minutes at the factory.
4. Memory patterns available in firmware revision A04 and higher. 40 memory locations available.
5. Memory pattern locations not affected by *RST or SYSTtem:PRESet. Use ROUT:MEM:CLE to clear memory.

Table 15-5
SENSe command summary

Command	Description	Default parameter	Ref	SCPI
[SENSe[1]]				
:FUNCtion <name> [, <clist>]	Select function: ‘VOLTage[:DC]’,   'VOLTage :AC', ‘CURRent[:DC]’,   'CURRent:AC', 'RESistance',   'FRESistance', 'TEMPerature',   ‘FREQuency', ‘PERiod’, ‘CONTinuity’.	VOLT:DC	Sec 3	$\checkmark$
:FUNCtion? [<clist>]	Query function.			$\checkmark$
:DATA[:LATest]?	Return the last reading.		Sec 3	$\checkmark$
:DATA:FRESh?	Return the last "fresh" reading.		Sec 3	
:HOLD	Path to control Hold feature:		Sec 8	
:WINDow <NRf>	Set Hold window in \% (0.01 to 20).	1		
:WINDow?	Query Hold window.			
:COUNt <NRf>	Set Hold count; 2 to 100.	5		
:COUNt?	Query Hold count.			
:STATe <NRf>	Enable or disable Hold.	OFF		
:STATe?	Query state of Hold.			
:CAVerage <b> [, <clist>]	Channel average calculation (7702 only):		Sec 5	
:DELay <NRf> [, <clist>]	Set delay between the two measurements in seconds ( 0 to 99999.999). ${ }^{1}$	0.5		
:DELay? [<clist>]	Query delay.			
[:STATe] <b> [, <clist>]	Enable or disable channel average.	OFF		
$\cdot$ RATio <b> [ <clist>]	Query state of channel average.			
:RATio <b> [, <clist>] :DELay <NRf> [, <clist>]	Channel ratio calculation (7702 only):   Set delay between the two measurements in seconds ( 0 to 99999.999). ${ }^{1}$	$\begin{gathered} \text { OFF } \\ 0.5 \end{gathered}$	Sec 5	
:DELay? [<clist>]	Query delay.			
[:STATe] <b> [, <clist>] [:STATe]? [, <clist>]	Enable or disable channel ratio. Query state of channel ratio.	OFF		

7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2 ) and $\mathrm{CH}=$ Switching module channel number. $7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)$ (see "Memory patterns," page 2-36).

Table 15-5 (cont.)
SENSe command summary

Command	Description	Default parameter	Ref	SCPI
[SENSe[1]]				
:VOLTage[:DC]	Path to configure DC voltage.		Sec 3	$\checkmark$
:APERture <NRf> [, <clist>]	Set integration rate in seconds $(60 \mathrm{~Hz}$; $1.67 \mathrm{e}-4$ to $1,50 \mathrm{~Hz} ; 2 \mathrm{e}-4$ to 1 ).	(Note 2)	Sec 4	
:APERture? [<clist>]	Query aperture integration rate.			
:NPLCycles <n> [, <clist>]	Set integration rate in line cycles $(60 \mathrm{~Hz}$; 0.01 to $60,50 \mathrm{~Hz} ; 0.01$ to 50 ).	5.0	Sec 4	$\checkmark$
:NPLCycles? [<clist>]	Query line cycle integration rate.			$\checkmark$
:RANGe	Path to set measurement range:		Sec 4	$\checkmark$
[:UPPer] <n> [, <clist>]	Select range (0 to 1010).	1000		$\checkmark$
[:UPPer]? [<clist>]	Query range.			$\checkmark$
:AUTO <b> [, <clist>]	Enable or disable auto range.	ON		$\checkmark$
:AUTO? [<clist>]	Query state of auto range.			$\checkmark$
:DIGits <n> [, <clist>]	Specify measurement resolution (4 to 7).	7	Sec 4	
:DIGits? [<clist>]	Query resolution.			
:REFerence <n> [, <clist>]	Specify reference (-1010 to 1010).	0	Sec 5	$\checkmark$
:STATe <b> [, <clist>]	Enable or disable reference.	OFF		$\checkmark$
:STATe? [<clist>]	Query state of reference.			$\checkmark$
:ACQuire [, <clist>]	Use input signal as reference.			
:REFerence? [<clist>]	Query reference value.			$\checkmark$
:AVERage	Path to configure and control filter:		Sec 4	
:TCONtrol <name>	Select filter type (MOVing or REPeat).	(Note 3)		
:TCONtrol?	Query filter type.			
:WINDow <NRf>	Set filter window in \% of range (0 to 10).	0.1		
:WINDow?	Query filter window.			
:COUNt <n> [, <clist>]	Specify filter count (1 to 100).	10		
:COUNt? [<clist>]	Query filter count.			
[:STATe] <b> [, <clist>]	Enable or disable filter.	(Note 4)		
[:STATe]? [<clist>]	Query state of digital filter.			
:IDIVider < b>	Enable or disable $10 \mathrm{M} \Omega$ input divider.	OFF	Sec 3	
:IDIVider?	Query state of input divider.			

7702 <clist> = (@SCH), where: $\mathrm{S}=$ Mainframe slot number (1 or 2 ) and $\mathrm{CH}=$ Switching module channel number.
$7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)$ (see "Memory patterns," page 2-36).

Table 15-5 (cont.)
SENSe command summary

\begin{tabular}{|c|c|c|c|c|}
\hline Command \& Description \& Default parameter \& Ref \& SCPI \\
\hline \begin{tabular}{l}
[SENSe[1]] \\
:VOLTage:AC \\
:APERture <NRf> \\
[, <clist>] \\
:APERture? [<clist>] \\
:NPLCycles <n>[, <clist>] \\
:NPLCycles? [<clist>] \\
:RANGe \\
[:UPPer] <n> [, <clist>] \\
[:UPPer]? [<clist>] \\
:AUTO <b> [, <clist>] \\
:AUTO? [<clist>] \\
:DIGits <n> [, <clist>] \\
:DIGits? [<clist>] \\
:REFerence <n> [, <clist>] \\
:STATe <b> [, <clist>] \\
:STATe? [<clist>] \\
:ACQuire [, <clist>] \\
:REFerence? [<clist>] \\
:AVERage \\
:TCONtrol <name> \\
:TCONtrol? \\
:WINDow <NRf> \\
:WINDow? \\
:COUNt <n> [, <clist>] \\
:COUNt? [<clist>] \\
[:STATe] <b> [, <clist>] \\
[:STATe]? [<clist>] \\
:DETector \\
:BANDwidth <NRf> [, <clist>] \\
:BANDwidth? [<clist>]
\end{tabular} \& \begin{tabular}{l}
Path to configure AC voltage. \\
Set integration rate in seconds ( 60 Hz ; \(1.67 \mathrm{e}-4\) to \(1,50 \mathrm{~Hz} ; 2 \mathrm{e}-4\) to 1 ). \\
Query aperture integration rate. Set integration rate in line cycles \((60 \mathrm{~Hz}\); 0.01 to \(60,50 \mathrm{~Hz} ; 0.01\) to 50 ). \\
Query line cycle integration rate. Path to set measurement range: Select range (0 to 757.5). \\
Query range. \\
Enable or disable auto range. \\
Query state of auto range. \\
Specify measurement resolution (4 to 7). Query resolution. \\
Specify reference (-757.5 to 757.5). \\
Enable or disable reference. \\
Query state of reference. \\
Use input signal as reference. \\
Query reference value. \\
Path to configure and control filter: \\
Select filter type (MOVing or REPeat). \\
Query filter type. \\
Set filter window in \% of range (0 to 10). \\
Query filter window. Specify filter count (1 to 100). \\
Query filter count. \\
Enable or disable filter. \\
Query state of digital filter. \\
Path to set bandwidth: \\
Set AC detector bandwidth in Hertz (3 to 3e5). \\
Query bandwidth.
\end{tabular} \& \begin{tabular}{l}
(Note 2) \\
5.0 \\
750 \\
ON \\
6 \\
0 \\
OFF \\
(Note 3) \\
0.1 \\
10 \\
(Note 4) \\
30
\end{tabular} \& Sec 3
Sec 4
Sec 4
Sec 4

Sec 4
Sec 5
Sec 4

Sec 4 \& $$
\checkmark
$$

$$
\begin{aligned}
& \checkmark \\
& \checkmark
\end{aligned}
$$ <br>

\hline
\end{tabular}

7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2 ) and CH = Switching module channel number.
$7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)$ (see "Memory patterns," page 2-36).

Table 15-5 (cont.)
SENSe command summary

Command	Description	Default parameter	Ref	SCPI
[SENSe[1]]   :CURRent[:DC]   :APERture <NRf>   [, <clist>]   :APERture? [<clist>]   :NPLCycles <n>[, <clist>]   :NPLCycles? [<clist>]   :RANGe   [:UPPer] <n> [, <clist>]   [:UPPer]? [<clist>]   :AUTO <b> [, <clist>]   :AUTO? [<clist>]   :DIGits <n> [, <clist>]   :DIGits? [<clist>]   :REFerence <n> [, <clist>] :STATe <b> [, <clist>]   :STATe? [<clist>]   :ACQuire [, <clist>]   :REFerence? [<clist>]   :AVERage   :TCONtrol <name>   :TCONtrol?   :WINDow <NRf>   :WINDow?   :COUNt <n> [, <clist>]   :COUNt? [<clist>]   [:STATe] <b> [, <clist>]   [:STATe]? [<clist>]	Path to configure DC current.   Set integration rate in seconds ( 60 Hz ;   $1.67 \mathrm{e}-4$ to $1,50 \mathrm{~Hz}$; $2 \mathrm{e}-4$ to 1 ).   Query aperture integration rate. Set integration rate in line cycles $(60 \mathrm{~Hz}$; 0.01 to $60,50 \mathrm{~Hz} ; 0.01$ to 50 ).   Query line cycle integration rate.   Path to set measurement range:   Select range (0 to 3.1).   Query range.   Enable or disable auto range.   Query state of auto range.   Specify measurement resolution (4 to 7). Query resolution.   Specify reference (-3.1 to 3.1).   Enable or disable reference.   Query state of reference.   Use input signal as reference.   Query reference value.   Path to configure and control filter:   Select filter type (MOVing or REPeat).   Query filter type.   Set filter window in \% of range (0 to 10).   Query filter window. Specify filter count (1 to 100). Query filter count. Enable or disable filter. Query state of digital filter.	(Note 2)   5.0   3   ON   7   0   OFF   (Note 3)   0.1   10   (Note 4)	Sec 3   Sec 4   Sec 4   Sec 4   Sec 4   Sec 5   Sec 4	$\checkmark$  

7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2 ) and $\mathrm{CH}=$ Switching module channel number. $7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)$ (see "Memory patterns," page 2-36).

Table 15-5 (cont.)
SENSe command summary

Command	Description	Default parameter	Ref	SCPI
[SENSe[1]]				
:CURRent:AC	Path to configure AC current.		Sec 3	$\checkmark$
:APERture <NRf> [, <clist>]	Set integration rate in seconds ( 60 Hz ; $1.67 \mathrm{e}-4$ to $1,50 \mathrm{~Hz} ; 2 \mathrm{e}-4$ to 1 ).	(Note 2)	Sec 4	
:APERture? [<clist>]	Query aperture integration rate.			
:NPLCycles <n>[, <clist>]	Set integration rate in line cycles $(60 \mathrm{~Hz}$; 0.01 to $60,50 \mathrm{~Hz} ; 0.01$ to 50 ).	5.0	Sec 4	$\checkmark$
:NPLCycles? [<clist>]	Query line cycle integration rate.			$\checkmark$
:RANGe	Path to set measurement range:		Sec 4	$\checkmark$
[:UPPer] <n>[, <clist>]	Select range (0 to 3.1).	3		$\checkmark$
[:UPPer]? [<clist>]	Query range.			$\checkmark$
:AUTO <b> [, <clist>]	Enable or disable auto range.	ON		$\checkmark$
:AUTO? [<clist>]	Query state of auto range.			$\checkmark$
:DIGits <n> [, <clist>]	Specify measurement resolution (4 to 7).	6	Sec 4	
:DIGits? [<clist>]	Query resolution.			
:REFerence <n>[, <clist>]	Specify reference (-3.1 to 3.1).	0	Sec 5	$\checkmark$
:STATe <b> [, <clist>]	Enable or disable reference.	OFF		$\checkmark$
:STATe? [<clist>]	Query state of reference.			$\checkmark$
:ACQuire [, <clist>]	Use input signal as reference.			
:REFerence? [<clist>]	Query reference value.			$\checkmark$
:AVERage	Path to configure and control filter:		Sec 4	
:TCONtrol <name>	Select filter type (MOVing or REPeat).	(Note 3)		
:TCONtrol?	Query filter type.			
:WINDow <NRf>	Set filter window in \% of range ( 0 to 10 ).	0.1		
:WINDow?	Query filter window.			
:COUNt <n> [, <clist>]	Specify filter count (1 to 100).	10		
:COUNt? [<clist>]	Query filter count.			
[:STATe] <b> [, <clist>]	Enable or disable filter.	(Note 4)		
[:STATe]? [<clist>]	Query state of digital filter.			
:DETector	Path to set bandwidth:		Sec 4	
:BANDwidth <NRf> [, <clist>]	Set AC detector bandwidth in Hertz (3 to 3e5).	30		
:BANDwidth? [<clist>]	Query bandwidth.			

[^14]Table 15-5 (cont.)
SENSe command summary

Command	Description	Default parameter	Ref	SCPI
[SENSe[1]]   :RESistance   :APERture <NRf>   [, <clist>]   :APERture? [<clist>]   :NPLCycles <n>[, <clist>]   :NPLCycles? [<clist>]   :RANGe   [:UPPer] <n> [, <clist>]   [:UPPer]? [<clist>]   :AUTO <b> [, <clist>]   :AUTO? [<clist>]   :DIGits <n> [, <clist>]   :DIGits? [<clist>]   :REFerence <n> [, <clist>]   :STATe <b> [, <clist>]   :STATe? [<clist>]   :ACQuire [, <clist>]   :REFerence? [<clist>]   :AVERage   :TCONtrol <name>   :TCONtrol?   :WINDow <NRf>   :WINDow?   :COUNt <n> [, <clist>]   :COUNt? [<clist>]   [:STATe] <b> [, <clist>]   [:STATe]? [<clist>]	Path to configure resistance.   Set integration rate in seconds ( 60 Hz ; $1.67 \mathrm{e}-4$ to $1,50 \mathrm{~Hz} ; 2 \mathrm{e}-4$ to 1 ).   Query aperture integration rate. Set integration rate in line cycles $(60 \mathrm{~Hz}$; 0.01 to $60,50 \mathrm{~Hz} ; 0.01$ to 50 ).   Query line cycle integration rate. Path to set measurement range: Select range (0 to 120e6).   Query range.   Enable or disable auto range.   Query state of auto range.   Specify measurement resolution (4 to 7). Query resolution.   Specify reference (0 to 120e6).   Enable or disable reference.   Query state of reference.   Use input signal as reference.   Query reference value.   Path to configure and control filter:   Select filter type (MOVing or REPeat).   Query filter type.   Set filter window in \% of range (0 to 10).   Query filter window. Specify filter count (1 to 100). Query filter count. Enable or disable filter. Query state of digital filter.	(Note 2)   5.0   120 e 6   ON   7   0   OFF   (Note 3)   0.1   10   (Note 4)	Sec 3   Sec 4   Sec 4   Sec 4   Sec 4   Sec 5   Sec 4	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$

7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2 ) and $\mathrm{CH}=$ Switching module channel number.
$7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ \mathrm{Mn})$ (see "Memory patterns," page 2-36).

Table 15-5 (cont.)
SENSe command summary

Command	Description	Default parameter	Ref	SCPI
[SENSe[1]]				
:FRESistance	Path to configure four-wire resistance.		Sec 3	$\checkmark$
:APERture <NRf> [, <clist>]	Set integration rate in seconds ( 60 Hz ; $1.67 \mathrm{e}-4$ to $1,50 \mathrm{~Hz} ; 2 \mathrm{e}-4$ to 1 ).	(Note 2)	Sec 4	
:APERture? [<clist>]	Query aperture integration rate.			
:NPLCycles <n>[, <clist>]	Set integration rate in line cycles $(60 \mathrm{~Hz}$; 0.01 to $60,50 \mathrm{~Hz} ; 0.01$ to 50 ).	5.0	Sec 4	$\checkmark$
:NPLCycles? [<clist>]	Query line cycle integration rate.			$\checkmark$
:RANGe	Path to set measurement range:		Sec 4	$\checkmark$
[:UPPer] <n> [, <clist>]	Select range (0 to 120e6).	120 e 6		$\checkmark$
[:UPPer]? [<clist>]	Query range.			$\checkmark$
:AUTO <b> [, <clist>]	Enable or disable auto range.	ON		$\checkmark$
:AUTO? [<clist>]	Query state of auto range.			$\checkmark$
:DIGits <n> [, <clist>]	Specify measurement resolution (4 to 7).	7	Sec 4	
:DIGits? [<clist>]	Query resolution.			
:REFerence <n> [, <clist>]	Specify reference (0 to 120e6).	0	Sec 5	$\checkmark$
:STATe <b> [, <clist>]	Enable or disable reference.	OFF		$\checkmark$
:STATe? [<clist>]	Query state of reference.			$\checkmark$
:ACQuire [, <clist>]	Use input signal as reference.			
:REFerence? [<clist>]	Query reference value.			$\checkmark$
:AVERage	Path to configure and control filter:		Sec 4	
:TCONtrol <name>	Select filter type (MOVing or REPeat).	(Note 3)		
:TCONtrol?	Query filter type.			
:WINDow <NRf>	Set filter window in \% of range (0 to 10).	0.1		
:WINDow?	Query filter window.			
:COUNt <n> [, <clist>]	Specify filter count (1 to 100).	10		
:COUNt? [<clist>]	Query filter count.			
[:STATe] <b> [, <clist>]	Enable or disable filter.	(Note 4)		
[:STATe]? [<clist>]	Query state of digital filter.			
:OCOMpensated <b> [, <clist>]	Enable or disable offset compensation.	OFF		
:OCOMpensated? [<clist>]	Query state of offset compensation.			

7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2 ) and $\mathrm{CH}=$ Switching module channel number. $7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ \mathrm{Mn})$ (see "Memory patterns," page 2-36).

Table 15-5 (cont.)
SENSe command summary

\begin{tabular}{|c|c|c|c|c|}
\hline Command \& Description \& Default parameter \& Ref \& SCPI \\
\hline \begin{tabular}{l}
[SENSe[1]] \\
:TEMPerature \\
:APERture <NRf> \\
[, <clist>] \\
:APERture? [<clist>] \\
:NPLCycles <n>[, <clist>] \\
:NPLCycles? \\
:DIGits <n> [, <clist>] \\
:DIGits? [<clist>] \\
:REFerence <n> [, <clist>] \\
:STATe <b> [, <clist>] \\
:STATe? [<clist>] \\
:ACQuire [, <clist>] \\
:REFerence? [<clist>] \\
:AVERage \\
:TCONtrol <name> \\
:TCONtrol? \\
:WINDow <NRf> \\
:WINDow? \\
:COUNt <n> [, <clist>] \\
:COUNt? [<clist>] \\
[:STATe] <b> [, <clist>] \\
[:STATe]? [<clist>] \\
:TRANsducer <name> [, <clist>] \\
:TRANsducer? [<clist>]
\end{tabular} \& \begin{tabular}{l}
Path to configure temperature: \\
Set integration rate in seconds \((60 \mathrm{~Hz}\); \(1.67 \mathrm{e}-4\) to \(1,50 \mathrm{~Hz}\); 2e-4 to 1 ). \\
Query aperture integration rate. Set integration rate in line cycles \((60 \mathrm{~Hz}\); 0.01 to \(60,50 \mathrm{~Hz} ; 0.01\) to 50 ). \\
Query line cycle integration rate. Specify measurement resolution (4 to 7). Query resolution. Specify reference in \({ }^{\circ} \mathrm{C}\) (-200 to 1820). Enable or disable reference. \\
Query state of reference. \\
Use input signal as reference. \\
Query reference value. \\
Path to configure and control filter: \\
Select filter type (MOVing or REPeat). \\
Query filter type. \\
Set filter window in \% of range (0 to 10). \\
Query filter window. Specify filter count (1 to 100). Query filter count. \\
Enable or disable filter. \\
Query state of digital filter. \\
Select temperature transducer (FRTD or THERmistor). \\
Query transducer type.
\end{tabular} \& \begin{tabular}{l}
(Note 2) \\
5.0 \\
6 \\
0 \\
OFF \\
(Note 3) \\
0.1 \\
10 \\
(Note 4) \\
THER
\end{tabular} \& Sec 3
Sec 4
Sec 4

Sec 4
Sec 5 \& $\checkmark$

$\checkmark$
$\checkmark$
$\checkmark$

$\checkmark$
$\checkmark$
$\checkmark$

$\checkmark$ <br>
\hline
\end{tabular}

7702 <clist> = (@SCH), where: $\mathrm{S}=$ Mainframe slot number (1 or 2 ) and $\mathrm{CH}=$ Switching module channel number.
$7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)($ see "Memory patterns," page 2-36).

Table 15-5 (cont.)
SENSe command summary

Command	Description	Default parameter	Ref	SCPI
[SENSe[1]]				
:TEMPerature				
:THERmistor	Path to configure thermistor:		Sec 3	
[:TYPE] <NRf> [ <clist>]	Set thermistor type in ohms (1950 to 10050).	5000		
[:TYPE]? [<clist>]	Query thermistor type.			
:FRTD	Path to configure 4-wire RTD:		Sec 3	
:TYPE <name> [, <clist>]	Select FRTD type (PT100, D100, F100, PT3916, PT385, or USER).	PT100		
:TYPE? [<clist>]	Query FRTD type.			
:RZERo <NRf> [, <clist>]	Specify constant for USER type (0 to 10000).	100		
:RZERo? [<clist>]	Query rzero.			
:ALPHa <NRf> [, <clist>]	Specify constant for USER type (0 to $0.01)$.	0.00385		
:ALPHa? [<clist>]	Query alpha.			
:BETA <NRf> [, <clist>]	Specify constant for USER type (0 to 1.00).	0.111		
:BETA? [<clist>]	Query beta.			
:DELTa <NRf> [, <clist>]	Specify constant for USER type (0 to 5.00).	1.507		
:DELTa? [<clist>]	Query delta.			
:FREQuency	Path to configure frequency.		Sec 3	
:APERture <NRf> [, <clist>]	Sets gate time for frequency measurements in seconds ( 0.01 to 1.0 ).	1.0	Sec 4	
:APERture? [<clist>]	Query frequency gate time.			
:DIGits <n> [, <clist>]	Specify measurement resolution (4 to 7).	7		
:DIGits? [<clist>]	Query resolution.			
:REFerence <n> [, <clist>]	Specify reference (0 to 1.5e7).	0	Sec 5	
:STATe <b> [, <clist>]	Enable or disable reference.	OFF		
STATe? [<clist>]	Query state of reference.			
:ACQuire [, <clist	Use input signal as reference.			
-THReshold	Query reference value.   Path to select the threshold voltage ran		Sec 3	
:VOLTage				$\checkmark$
:RANGe <n> [, <clist>]   :RANGe? [<clist>]	Select threshold range (0 to 1010). Query threshold range.	10		

7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2) and CH = Switching module channel number. $7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ \mathrm{Mn})$ (see "Memory patterns," page 2-36).

Table 15-5 (cont.)
SENSe command summary

Command	Description	Default parameter	Ref	SCPI
[SENSe[1]]   :PERiod   :APERture <NRf>   [, <clist>]   :APERture? [<clist>]   :DIGits <n> [, <clist>]   :DIGits? [<clist>]   :REFerence <n> [, <clist>]   :STATe <b> [, <clist>]   :STATe? [<clist>]   :ACQuire [, <clist>]   :REFerence? [<clist>]   :THReshold   :VOLTage   :RANGe <n> [, <clist>]   :RANGe? [<clist>]   :CONTinuity   :THReshold <NRf>   :THReshold?	Path to configure period:   Sets gate time for period measurements in seconds ( 0.01 to 1.0).   Query period gate time.   Specify measurement resolution (4 to 7).   Query resolution.   Specify reference (0 to 1).   Enable or disable reference.   Query state of reference.   Use input signal as reference.   Query reference value.   Path to select the threshold voltage range:   Select threshold range (0 to 1010).   Query threshold range.   Path to configure continuity test:   Set threshold resistance in ohms (1 to 1000).   Query threshold resistance.	1.0   7   0 OFF   10   10	Sec 3   Sec 4   Sec 4   Sec 5   Sec 3   Sec 3	

Notes:

1. CAVerage:DELay and RATio:DELay are coupled. Changing the delay for channel average also changes the delay for channel ratio and vice versa.
2. For 60 Hz line power, the default for aperture is 16.67 msec . For 50 Hz , the default is 20 msec .
3. REPeat is the *RST default and MOVing is the SYSTem:PRESet default. From the front panel, the factory default is MOVing.
4. OFF is the *RST default and ON is the SYTem:PRESet default.

Table 15-6
SOURce command summary

Command	Description	Default parameter	Ref	SCPI
SOURce				
:VOLTage[:LEVel][:IMMediate]				
[:AMPLitude] <NRf>, <clist>	Set V-source output; 50 to 500 (V).	50		
[:AMPLitude]? <clist>	Query V-source output level.			
SOURce				
:CURRent[:LEVel][:IMMediate]				
[:AMPLitude] <NRf>, <clist>	Set I-source output; 0 to $50(\mathrm{~mA})$.	0.001		
	$\begin{aligned} <c l i s t> & =(@ 127) \text { Slot } 1 \\ & =(@ 227) \text { Slot } 2 \end{aligned}$			
[:AMPLitude]? <clist>	Query I-source output level.			

Note: Selecting an ohms calculation enables source tracking. Selecting any other math function disables source tracking.

Table 15-7
STATus command summary

Command	Description	Default parameter	Ref	SCPI
STATus		(Note 1)	Sec 11	$\checkmark$
:MEASurement	Path to control measurement event registers:			
[:EVENt]?	Read the event register.	(Note 2)		
:ENABle <NRf>	Program the enable register.	(Note 3)		
:ENABle?	Read the enable register.			
:CONDition?	Read the condition register.			
:OPERation	Path to control operation status registers:			$\checkmark$
[:EVENt]?	Read the event register.	(Note 2)		$\checkmark$
:ENABle < NRf>	Program the enable register.	(Note 3)		$\checkmark$
:ENABle?	Read the enable register.			$\checkmark$
:CONDition?	Read the condition register.			$\checkmark$
:QUEStionable	Path to control questionable status registers:			$\checkmark$
[:EVENt]?	Read the event register.	(Note 2)		$\checkmark$
:ENABle <NRf>	Program the enable register.	(Note 3)		$\checkmark$
:ENABle?	Read the enable register.			$\checkmark$
:CONDition?	Read the condition register.			$\checkmark$
:PRESet	Return status registers to default states.			$\checkmark$
:QUEue	Path to access error queue:			$\checkmark$
[:NEXT]?	Read the most recent error message.	(Note 4)		$\checkmark$
:ENABle <list>	Specify error and status messages for queue.	(Note 5)		$\checkmark$
:ENABle?	Read the enabled messages.			$\checkmark$
:DISable <list>	Specify messages not to be placed in queue.	(Note 5)		
:DISable?	Read the disabled messages.			
:CLEar	Clears all messages from Error Queue.			

## Notes:

1. Commands in this subsystem are not affected by *RST and SYSTem:PRESet. The effects of cycling power, *CLS, and STATus:PRESet are explained by the following notes.
2. Event Registers: Power-up and *CLS - Clears all bits of the registers. STATus:PRESet - No effect.
3. Enable Registers: Power-up and STATus:PRESet - Clears all bits of the registers. *CLS - No effect.
4. Error Queue: Power-up and *CLS - Clears the Error Queue. STATus:PRESet - No effect.
5. Enable/Disable Error Queue Messages: Power-up - Clears list of messages. *CLS and STATus:PRESet - No effect.

## Table 15-8

## SYSTem command summary

Command	Description	Default parameter	Ref	SCPI
SYSTem				
:PRESet	Return to :SYST:PRES defaults.		Sec 1	$\checkmark$
:POSetup <name>	Select power-on setup (RST, PRESet).	PRES	Sec 1	
:POSetup?	Query power-on setup.			
:FRSWitch?	Query INPUTS switch (0=rear, $1=$ front).		Sec 1	
:BEEPer	Path to control beeper.		Sec 14	
[:STATe] <b>	Enable or disable beeper.	ON		$\checkmark$
[:STATe]?	Query state of beeper.			$\checkmark$
:KCLick <b>	Turn the keyclick on/off.	ON	Sec 1	
:KCLick?	Query the keyclick status.			
:KEY <NRf>	Simulate key-press (1 to 31; see Figure 14-3).		Sec 14	$\checkmark$
:KEY?	Query the last "pressed" key.			$\checkmark$
:AZERo	Path to set up autozero.		Sec 3	
:STATe <b>	Enable or disable autozero.	ON		
:STATe?	Query autozero.			
:LSYNc	Path to control line synchronization:		Sec 3	
[:STATe] <b>	Enable or disable line-sync.	OFF		
[:STATe]?	Query state of line-sync.			
:LFRequency?	Query power line frequency.		Sec 1	
:PCARdX <name>	Set up an empty slot ( $\mathrm{X}=1$ or 2 ) as a pseudocard (C7702, C7751, C7752).		Sec 2	
:CARDX	Path to query switching module in specified slot ${ }^{1}$ $(\mathrm{X}=1 \text { or } 2) .$			
:SNUMber?	Request serial number ${ }^{2}$. ${ }^{2}$			
:SWRevision?	Request firmware revision ${ }^{2}$.			
:VMAX?	Request maximum allowable voltage.			
:MUX?	Support multiplexer channels?; $1=$ yes, $0=$ no.			
:ISOLated?	Support isolated channels?, $1=$ yes, $0=$ no.			
:TCOMpensated?	Built-in temperature sensors for T/C cold junction?; $1=$ yes, $0=n o^{3}$.			
:VCHannel	Path to query volts/2-wire channels:			
[:STARt]?	Request lowest numbered volts/2-wire channel (usually 1); $0=$ voltage measurements not supported.			
:END?	Request highest numbered volts/2-wire channel. $0=$ voltage measurements not supported.			

Table 15-8 (cont.)
SYSTem command summary

Command	Description	Default parameter	Ref	SCPI
SYSTem				
:CARDX				
:ACHannel	Path to query amps channels ${ }^{3}$ :			
[:STARt]?	Request lowest numbered amps channel; $0=\mathrm{amps}$ measurements not supported.			
:END?	Request highest numbered amps channel; $0=$ amps measurements not supported.			
:AOUTput	Path to query analog output channels ${ }^{3}$ :			
[:STARt]?	Request lowest numbered analog output channel; $0=$ analog output not supported.			
:END?	Request highest numbered analog output channel; $0=$ analog output not supported.			
:DOUTput	Path to query digital output channels ${ }^{3}$ :			
[:STARt]?	Request lowest numbered digital output channel; $0=$ digital output not supported.			
:END?	Request highest numbered digital output channel; $0=$ digital output not supported.			
:ICHannel?	Path to query isolated channels ${ }^{3}$ :			
[:STARt]?	Request lowest numbered isolated channel; $0=$ isolated channels not supported.			
:END?	Request highest numbered isolated channel; $0=$ isolated channels not supported.			
:TCHannel?	Query the totalizer channel.			
:DINPut	Path to query digital input channels ${ }^{3}$ :			
[:STARt]?	Request lowest numbered digital input port; $0=$ digital input not supported.			
:END?	Request highest numbered digital output channel; $0=$ digital input not supported.			
:SNOpen?	Query whether card is "single no-open" type (i.e., 7711 ); $1=$ yes, $0=$ no.			
:BANKs?	For "single no-open" card, query number of banks. If not "single no-open" type, error -221 (settings conflict) results.			
:SWOpen?	Query whether card is "single with-open" type $(1=\text { yes, } 0=n o)^{3}$.			
:BANKs?	For "single with-open"card, query number of banks.			
:CSOhms?	Query whether card supports common-side 4-wire ohms ${ }^{3}$.			

Table 15-8 (cont.)

## SYSTem command summary

Command	Description	Default parameter	Ref	SCPI
SYSTem				
:TIME <hr, min, sec>	Set system time using 24-hour format.		Sec 6	
:TIME?	Query system time.			
:DATE <yr, mo, day>	Set system date ( $\mathrm{yr}=2002$ to 2101) .		Sec 6	
:DATE?	Query system date.			
:TSTamp	Path to set timestamp:		Sec 6	
:TYPE <name> -TYPE?	Select timestamp type (RELative or RTCLock).   Query timestamp type that will be used for the	REL		
:TYPE?	Query timestamp type that will be used for the next buffer storage.			
:RELative :RESet	Path to reset relative timestamp:   Reset relative timestamp to 0 .			
:RNUMber	Path to reset reading number:		Sec 14	
:RESet	Reset reading number. Next reading will be \#1.			
:ERRor?	Query (read) Error Queue.	(Note 4)	Sec 11	$\checkmark$
:CLEar	Clears messages from the Error Queue.		Sec 11	
:VERSion?	Query rev level of SCPI standard.		Sec 14	$\checkmark$
:LOCal	Take Model 2790 out of remote and restore operation of front panel controls (RS-232 only).		Sec 10	
:REMote	Place Model 2790 in remote (RS-232 only).		Sec 10	
:RWLock	Lockout front panel controls (RS-232 only).		Sec 10	

Note:

1. If there is no card in the specified slot, error -241 Hardware Missing will occur.
2. If a pseudocard is installed in the slot, the message "????????" will be returned when querying the serial number or firmware revision.
3. These commands are not useful to Model 2790 users since none of the relevant modules are supported by the Model 2790 mainframe. They are included to provide compatibility with the software that also supports the 2700/2750. Future modules for the Model 2790 may use these commands.
4. Power-up and *CLS clears the error queue.*RST, SYSTem:PRESet, and STATus:PRESet have no effect on the error queue.

Table 15-9
TRACe command summary

Command	Description	$\begin{gathered} \text { Default } \\ \text { parameter* } \end{gathered}$	Ref	SCPI
TRACel:DATA	Use TRACe or DATA as root command.		Sec 6	
:CLEar	Path to clear the buffer.			
[:IMMediate]	Clear the buffer.			
:AUTO <b>	Enable or disable buffer auto-clear.	ON		
:AUTO?	Query state of buffer auto-clear.			
:FREE?	Query bytes available and bytes in use.			$\checkmark$
:POINts <NRf>	Specify size of buffer (2 to 55000).	100		$\checkmark$
:POINts?	Query buffer size.			$\checkmark$
:NOTify <NRf>	Specify number of stored readings that will set Trace Notify bit (B6) of measurement event register (2 to 55000). Must be less than TRACe:POINts value.	50		
:NOTify?	Query trace notify value.			
:NEXT?	Query buffer location for next stored reading.			
:TSTamp	Path to set timestamp format:			
:FORMat <name> :FORMat?	Select timestamp format (ABSolute or DELTa). Query timestamp format.	ABS		
:TYPE?	Query timestamp type for readings presently in buffer.			
:FEED <name>	Select source of readings (SENSe[1], CALCulate[1], or NONE).	CALC		$\checkmark$
:CONTrol <name>	Select buffer control mode (NEVer, NEXT, or ALWays).	NEV		$\checkmark$
:CONTrol?	Query buffer control mode.			$\checkmark$
:FEED?	Query source of readings for buffer.			$\checkmark$
:DATA?	Read all readings in the buffer.			$\checkmark$
:DATA:SELected?   <start>, <count>	Specify readings to be returned; specify starting point (first reading is \#0) and number of readings (count).			

*SYSTem:PRESet and *RST have no effect on commands in this subsystem. The listed defaults are defaults set at the factory.

Table 15-10
Trigger command summary

Command	Description	Default parameter	Ref	SCPI
INITiate   [:IMMediate] :CONTinuous <b> :CONTinuous?	Subsystem command path: Initiate one trigger cycle. Enable or disable continuous initiation. Query continuous initiation.	(Note 1)	Sec 8	7 $\checkmark$ $\checkmark$ $\checkmark$
ABORt	Reset trigger system.			$\checkmark$
TRIGger[:SEQuence[1]]	Path to program Trigger Layer:			$\checkmark$
:COUNt <n>	Set measure count (1 to 55000, or INFinity).	(Note 2)		$\checkmark$
:COUNt?	Query measure count.			$\checkmark$
:DELay <n>	Set delay (0 to 999999.999 sec ).	0		$\checkmark$
:AUTO < - AUT	Enable or disable auto delay.	OFF		
:DELay?	Query delay.			$\checkmark$
:SOURce <name>	Select control source (IMMediate, TIMer, MANual, BUS, or EXTernal).	IMM		$\checkmark$
:SOURce?	Query control source.			$\checkmark$
:TIMer <n>	Set timer interval (0.001 to 999999.999 sec ).	0.1		$\checkmark$
:TIMer?	Request the programmed timer interval.			$\checkmark$
:SIGNal	Loop around control source.			$\checkmark$
SAMPle				
:COUNt <NRf> :COUNt?	Specify sample count (1 to 55000). Query sample count.	1		

Notes:

1. Defaults for continuous initiation: SYSTem:PRESet enables continuous initiation. *RST disables continuous initiation.
2. Defaults for count:

SYSTem:PRESet sets the count to INF (infinity).
*RST sets the count to 1 .

Table 15-11
UNIT command summary

Command	Description	Default parameter	Ref	SCPI
UNIT				
:TEMPerature <name>	Select temperature units (C, CEL, F, FAR, or K).	C	Sec 3	$\checkmark$
:TEMPerature?	Query temperature units.			$\checkmark$
:VOLTage	Path to configure voltage units.			
[:DC] <name> [, <clist>]	Select DCV measurement units (V or DB).	V		
:DB	Path to set DB reference voltage:			
:REFerence <n> :REFerence?	Specify reference in volts (1e-7 to 1000). Query reference.	1		
[:DC]? [<clist>]	Query DCV units.			
:AC <name> [, <clist>]	Select ACV measurement units (V or DB).	V		
:DB	Path to set DB reference voltage.			
:REFerence <n>	Specify reference in volts (le-7 to 1000).	1		
:REFerence?	Query DB reference.			
:AC? [<clist>]	Query ACV units.			

7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2$)$ and $\mathrm{CH}=$ Switching module channel number. $7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)$ (see "Memory patterns," page 2-36).

## 16

## Performance Verification

- Verification test requirements - Covers environmental conditions, warm-up period, and line power requirements.
- Recommended test equipment - Lists all the equipment necessary to perform the verification tests.
- Restoring factory defaults - Provides procedures to restore factory defaults.
- Verification limits - Discusses how the reading limits are calculated.
- Performing the verification test procedures - Outlines the type of tests and summarizes test considerations.
- Model 2790 verification - Provides all the procedures necessary to verify accuracy of all Model 2790 measurement functions.
- Model 7702 verification - Provides all the procedures necessary to verify accuracy using the Model 7702 module.
- Model 7751, 7752, and 7753 verification - Provides all the procedures necessary to verify source and measurement accuracy for Model 7751/7752/7753 modules.


## Introduction

Use the procedures in this section to verify that Model 2790 SourceMeter/Switch System accuracy is within the limits stated in the instrument's one-year accuracy specifications. You can perform these verification procedures:

- When you first receive the instrument to make sure that it was not damaged during shipment, and that the unit meets factory specifications.
- If the instrument's accuracy is questionable.
- Following calibration.

WARNING The information in this section is intended only for qualified service personnel. Do not attempt these procedures unless you are qualified to do so.

NOTE If the instrument is still under warranty and its performance is outside specified limits, contact your Keithley representative or the factory to determine the correct course of action. If the unit is not under warranty and it fails to meet specified limits, refer to the calibration procedures in Section 17.

There are two general verification procedures in this section:

- Model 2790 verification: Covers procedures to verify measurement accuracy of the Model 2790 using the front panel terminals.
- Model 7702 verification: Discusses procedures to verify accuracy of measurements made through the Model 7702 40-Channel Multiplexer.


## Verification test requirements

Be sure that you perform the verification tests:

- Under the proper environmental conditions.
- After the specified warm-up period.
- Using the correct line voltage.
- Using the proper calibration equipment.
- Using the specified reading limits.


## Environmental conditions

Conduct your performance verification procedures in a test environment that has:

- An ambient temperature of $18^{\circ}$ to $28^{\circ} \mathrm{C}\left(65^{\circ}\right.$ to $\left.82^{\circ} \mathrm{F}\right)$.
- A relative humidity of less than $60 \%$ unless otherwise noted.


## Warm-up period

Allow the Model 2790 to warm up for at least two hours before conducting the verification procedures.

If the instrument has been subjected to temperature extremes (those outside the ranges stated above), allow additional time for the instrument's internal temperature to stabilize. Typically, allow one extra hour to stabilize a unit that is $10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ outside the specified temperature range.

Also, allow the test equipment to warm up for the minimum time specified by the manufacturer.

## Line power

The Model 2790 requires a line voltage of $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V},+10 \%,-5 \%$ and a line frequency of 50 or 60 Hz . Note that the line frequency is automatically sensed at power-up, but the line voltage must be manually set to either $100 \mathrm{~V} / 120 \mathrm{~V}$ or $220 \mathrm{~V} / 240 \mathrm{~V}$ as described in Section 18.

## Recommended test equipment

Table 16-1 summarizes recommended verification equipment. You can use alternate equipment as long as that equipment has specifications equivalent to or better than those listed in Table 16-1. In general, equipment uncertainty should be at least four times better than corresponding Model 2790 specifications. Keep in mind, however, that calibrator uncertainty will add to the uncertainty of each measurement.

Table 16-1
Recommended verification equipment
Fluke 5700A Calibrator:

DC voltage	AC voltage ( $1 \mathrm{kHz}, 50 \mathrm{kHz}$ )	DC current	AC current (1kHZ)	Resistance
$\begin{aligned} & 100 \mathrm{mV}: \pm 14 \mathrm{ppm} \\ & 1.0 \mathrm{~V}: \pm 7 \mathrm{ppm} \\ & 10 \mathrm{~V}: \pm 5 \mathrm{ppm} \\ & 100 \mathrm{~V}: \pm 7 \mathrm{ppm} \\ & 1000 \mathrm{~V}: \pm 9 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV}: \pm 200 \mathrm{ppm} \\ & 1.0 \mathrm{~V}: \pm 82 \mathrm{ppm} \\ & 10 \mathrm{~V}: \pm 82 \mathrm{ppm} \\ & 100 \mathrm{~V}: \pm 90 \mathrm{ppm} \\ & 700 \mathrm{~V}: \pm 85 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~mA}: \pm 60 \mathrm{ppm} \\ & 100 \mathrm{~mA}: \pm 70 \mathrm{ppm} \\ & 1 \mathrm{~A}: \pm 110 \mathrm{ppm} \\ & 2.2 \mathrm{~A}: \pm 94 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A}: \pm 690 \mathrm{ppm} \\ & 2.2 \mathrm{~A}: \pm 682 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & 10 \Omega: \pm 28 \mathrm{ppm} \\ & 19 \Omega: \pm 26 \mathrm{ppm} \\ & 100 \Omega: \pm 17 \mathrm{ppm} \\ & 1 \mathrm{k} \Omega: \pm 12 \mathrm{ppm} \\ & 10 \mathrm{k} \Omega: \pm 11 \mathrm{ppm} \\ & 100 \mathrm{k} \Omega: \pm 13 \mathrm{ppm} \\ & 1 \mathrm{M} \Omega: \pm 18 \mathrm{ppm} \\ & 10 \mathrm{M} \Omega: \pm 37 \mathrm{ppm} \\ & 100 \mathrm{M} \Omega: \pm 120 \mathrm{ppm} \end{aligned}$

Fluke 5725A Amplifier:
AC Voltage, $50 \mathrm{kHz}: 700 \mathrm{~V}, \pm 375 \mathrm{ppm}$
DC Current, $3 \mathrm{~A}, \pm 500 \mathrm{ppm}$
AC Current, $1 \mathrm{kHz}, 3 \mathrm{~A}, \pm 457 \mathrm{ppm}$
Stanford Research Systems DS345 Function Generator:
1 V RMS $1 \mathrm{kHz}, \pm 5 \mathrm{ppm}$
General Radio 1433-T Precision Decade Resistance Box:
$10 \Omega$ to $400 \Omega, \pm 0.02 \%$
Miscellaneous Equipment:
Double banana plug to double banana plug shielded cables (2)
BNC to double banana plug shielded cable
NOTE: The Fluke 5725A amplifier is necessary only if you wish to verify the 750 V AC range at 50 kHz and 3 A AC and DC current ranges at 3 A . Verification at $220 \mathrm{~V}, 50 \mathrm{kHz}$, and 2.2 A on the current ranges using only the 5700 A calibrator is adequate for most applications.

## Verification limits

The verification limits stated in this section have been calculated using only the Model 2790 one-year accuracy specifications, and they do not include test equipment uncertainty. If a particular measurement falls slightly outside the allowable range, recalculate new limits based on both Model 2790 specifications and pertinent calibration equipment specifications.

## Example reading limit calculation

The following is an example of how reading limits have been calculated. Assume you are testing the 10 V DC range using a 10 V input value. Using the Model 2790 one-year accuracy specification for 10 V DC of $\pm$ ( 30 ppm of reading +5 ppm of range), the calculated limits are:

Reading limits $=10 \mathrm{~V} \pm[(10 \mathrm{~V} \times 30 \mathrm{ppm})+(10 \mathrm{~V} \times 5 \mathrm{ppm})]$
Reading limits $=10 \mathrm{~V} \pm(0.0003+0.00005)$
Reading limits $=10 \mathrm{~V} \pm 0.00035 \mathrm{~V}$
Reading limits $=9.99965 \mathrm{~V}$ to 10.00035 V

## Calculating resistance reading limits

Resistance reading limits must be recalculated based on the actual calibration resistance values supplied by the equipment manufacturer. Calculations are performed in the same manner as shown in the preceding example, except, of course, that you should use the actual calibration resistance values instead of the nominal values when performing your calculations.

For example, assume that you are testing the $10 \mathrm{k} \Omega$ range using an actual $10.03 \mathrm{k} \Omega$ calibration resistance value. Using Model 2790 one-year $10 \mathrm{k} \Omega$ range accuracy of $\pm$ (100ppm of reading +6 ppm of range), the calculated reading limits are:

Reading limits $=10.03 \mathrm{k} \Omega \pm[(10.03 \mathrm{k} \Omega \times 100 \mathrm{ppm})+(10 \mathrm{k} \Omega \times 6 \mathrm{ppm})]$
Reading limits $=10.02894 \mathrm{k} \Omega$ to $10 . .03106 \mathrm{k} \Omega$

## Restoring factory defaults

Before performing the verification procedures, restore the instrument to its factory defaults as follows:

1. Press SHIFT and then SETUP. The instrument will display the following prompt: RESTORE: FACT.
2. Using either range key, select FACT, then restore the factory default conditions by pressing ENTER.

## Performing the verification test procedures

## Verification test summary

This section contains the following procedures:

- Model 2790 verification: Use this procedure to test Model 2790 accuracy through the front panel terminals.
- Model 7702 verification: Use this procedure to test accuracy through the Model 7702 40-Channel Multiplexer Card.
- Model 7751/7752/7753 verification: use this procedure to verify accuracy of the sources of the Model 7751/7752/7753 cards.


## Model 2790 tests

Model 2790 verification test procedures include:

- DC and AC volts
- DC and AC current
- Resistance
- Temperature
- Frequency


## Model 7702 tests

Model 7702 verification test procedures include:

- DC and AC volts
- DC and AC current
- Resistance
- Temperature
- Frequency
- Ratio and average


## Model 7751/7752/7753 tests

Model 7751/7752/7753 verification test procedures include:

- Source verification tests
- Current input tests
- Low and high resistance tests


## Test considerations

When performing the verification procedures:

- Be sure to restore factory defaults as outlined above.
- Make sure that the equipment is properly warmed up and connected to the correct input terminals. Also, make sure that the INPUTS switch is in the correct position.
- Do not use autoranging for any verification tests because autorange hysteresis may cause the Model 2790 to be on an incorrect range. For each test signal, you must manually set the correct range for the Model 2790 using the range keys.
- Make sure the calibrator is in operate before you verify each measurement.
- Always let the source signal settle before taking a reading.

WARNING Observe the following safety precautions when performing these tests:

- Some of the procedures in this section may expose you to dangerous voltages. Use standard safety precautions when such dangerous voltages are encountered to avoid personal injury or death caused by electric shock.
- For the front panel terminals only, the maximum common-mode voltage (voltage between INPUT LO and chassis ground) is 500 V peak. Exceeding this value may cause a breakdown in insulation, creating a shock hazard.
- For the Model 7702 module, the maximum common-mode voltage (voltage between any plug-in module terminal and chassis ground) is 300 V DC or 300 V RMS. Exceeding this value may cause a breakdown in insulation, creating a shock hazard.
- When using the front panel terminals simultaneously with plug-in modules, all cable insulation voltage ratings must equal or exceed the maximum voltage applied to either the front panel terminals or the plug-in module terminals.


## Model 2790 verification

Perform these tests to verify accuracy using the Model 2790 front panel terminals.

## Verifying DC voltage

Check DC voltage accuracy by applying accurate voltages from the DC voltage calibrator to the Model 2790 INPUT jacks and verifying that the displayed readings fall within specified limits.

CAUTION Do not exceed 1000 V peak between front terminals INPUT HI and INPUT LO, because instrument damage may occur.

Follow these steps to verify DC voltage accuracy:

1. Connect the Model 2790 HI and LO INPUT jacks to the DC voltage calibrator as shown in Figure 16-1. Make sure the INPUTS switch is set to the FRONT position.

NOTE Use shielded, low-thermal connections when testing the 100 mV and 1 V ranges to avoid errors caused by noise or thermal effects. Connect the shield to the calibrator's output LO terminal.

Figure 16-1
Connections for Model 2790 DC volts verification

2. Select the DC volts function by pressing the DCV key and set the Model 2790 to the 100 mV range.
3. Set the calibrator output to 0.00000 mV DC and allow the reading to settle.
4. Enable the Model 2790 REL mode. Leave REL enabled for the remainder of the DC volts verification tests.
5. Source positive and negative and full-scale voltages for each of the ranges listed in Table 16-2. For each voltage setting, be sure that the reading is within stated limits.

Table 16-2
DCV reading limits

DCU   Range	Applied   DC voltage*	Reading limits   (1 year, $18^{\circ}$ to $28^{\circ} \mathrm{C}$ )
100 mV	100.0000 mV	99.9900 to 100.0100 mV
1 V	1.000000 V	0.999963 to 1.000037 V
10 V	10.00000 V	9.99965 to 10.00035 V
100 V	100.0000 V	99.9936 to 100.0064 V
1000 V	1000.000 V	999.940 to 1000.059 V

[^15]
## Verifying AC voltage

Check AC voltage accuracy by applying accurate AC voltages at specific frequencies from the AC voltage calibrator to the Model 2790 inputs and verifying that the displayed readings fall within specified ranges.

CAUTION Do not exceed 1000V peak between front terminals INPUT HI and INPUT LO, or $8 \times 10^{7} \mathrm{~V} \cdot \mathrm{~Hz}$ input, because instrument damage may occur.

Follow these steps to verify AC voltage accuracy:

1. Connect the Model 2790 HI and LO INPUT jacks to the AC voltage calibrator as shown in Figure 16-2. Be sure the INPUTS switch is in the FRONT position.
2. Select the AC volts function by pressing the ACV key.
3. Set the Model 2790 for the 100 mV range; make sure that REL is disabled.
4. Source 1 kHz and 50 kHz AC voltages for each of the ranges summarized in Table 16-3. Ensure that the respective Model 2790 readings fall within stated limits.

Figure 16-2
Connections for Model 2790 AC volts verification


Table 16-3
ACV reading limits

ACV   range	Applied AC   voltage	1 kHz reading limits   (1 year, $18^{\circ} \mathrm{C}$ to $\mathbf{2 8}{ }^{\circ} \mathrm{C}$ )	50kHz reading limits   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )
100 mV	100.0000 mV	99.910 to 100.090 mV	99.830 to 100.170 mV
1 V	1.000000 V	0.99910 to 1.00090 V	0.99830 to 1.00170 V
10 V	10.00000 V	9.9910 to 10.0090 V	9.98300 to 10.0170 V
100 V	100.0000 V	99.910 to 100.090 V	99.830 to 100.170 V
750 V	$700.000 \mathrm{~V}^{*}$	699.36 to 700.64 V	698.79 to 701.21 V

[^16]
## Verifying DC current

Check DC current accuracy by applying accurate DC currents from the DC current calibrator to the AMPS input of the Model 2790 and verifying that the displayed readings fall within specified limits.
Follow these steps to verify DC current accuracy:

1. Connect the Model 2790 AMPS and INPUT LO jacks to the calibrator as shown in Figure 16-3. Be sure the INPUTS switch is in the FRONT position.
2. Select the DC current measurement function by pressing the DCI key.
3. Set the Model 2790 for the 20 mA range.
4. Source positive and negative full-scale currents for each of the ranges listed in Table $16-4$ and verify that the readings for each range are within stated limits.

Figure 16-3
Connections for Model 2790 DC current verification


Table 16-4
DCI limits

DCI range	Applied   DC current*	Reading limits   (1 year, $\mathbf{1 8}^{\circ} \mathbf{C}$ to $28^{\circ} \mathrm{C}$ )
20 mA	20.0000 mA	19.9892 to 20.01080 mA
100 mA	100.0000 mA	99.9100 to 100.0900 mA
1 A	1.000000 A	0.999160 to 1.000840 A
3 A	$3.000000 \mathrm{~A}^{* *}$	2.99628 to 3.00372 A

[^17]
## Verifying AC current

Check AC current accuracy by applying accurate AC voltage current at specific frequencies from the AC current calibrator to the Model 2790 input and verifying that the displayed readings fall within specified limits. Follow these steps to verify AC current:

1. Connect the Model 2790 AMPS and INPUT LO jacks to the calibrator as shown in Figure 16-4. Be sure the INPUTS switch is in the FRONT position.

Figure 16-4
Connections for Model 2790 AC current verification

2. Select the AC current function by pressing the ACI key.
3. Set the Model 2790 for the 1 A range.
4. Source 1 A and $3 \mathrm{~A}, 1 \mathrm{kHz}$ full-scale AC currents as summarized in Table $16-5$ and verify that the readings are within stated limits.

Table 16-5
ACI limits

ACI range	Applied   AC current	Reading limits @ 1 kHz   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )
1 A	1.000000 A	0.99860 to 1.00140 A
3 A	$3.00000 \mathrm{~A}^{*}$	2.9937 to 3.0063 A

[^18]
## Verifying resistance

Check the resistance function by connecting accurate resistance values to the Model 2790 and verifying that its resistance readings are within the specified limits.

CAUTION Do not apply more than 1000 V peak between front terminals INPUT HI and LO or more than 350 V peak between SENSE HI and LO, or instrument damage could occur.

Follow these steps to verify resistance accuracy:

1. Using shielded, Teflon-insulated or equivalent cables in a 4 -wire configuration, connect the Model 2790 INPUT and SENSE jacks to the calibrator as shown in Figure 16-5. Be sure the INPUTS switch is in the FRONT position.

Figure 16-5
Connections for Model 2790 resistance verification (100 2 to $10 \mathrm{M} \Omega$ ranges)

2. Set the calibrator for 4-wire resistance with external sense on.
3. Select the Model 27904 -wire resistance function by pressing the $\Omega 4$ key, then choose the SLOW integration rate with the RATE key.
4. Set the Model 2790 for the $100 \Omega$ range and make sure the FILTER is on. Enable OCOMP (offset-compensated ohms) by pressing SHIFT then OCOMP. (Use OCOMP for $100 \Omega$ range verification.)
5. Recalculate reading limits based on actual calibrator resistance values.
6. Source the nominal full-scale resistance values for the $100 \Omega-10 \mathrm{M} \Omega$ ranges summarized in Table 16-6 and verify that the readings are within calculated limits.
7. Connect the Model 2790 INPUT and SENSE jacks to the calibrator as shown in Figure 16-6.
8. Disable external sense on the calibrator.
9. Set the Model 2790 for the $100 \mathrm{M} \Omega$ range.
10. Source a nominal $100 \mathrm{M} \Omega$ resistance value, and verify that the reading is within calculated limits for the $100 \mathrm{M} \Omega$ range.

Figure 16-6
Connections for Model 2790 resistance verification (100M $\Omega$ range)


Table 16-6
Limits for resistance verification

$\Omega$ Range	Nominal   resistance	Nominal reading $\operatorname{limits}$   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )	Recalculated limits**

[^19]
## Verifying temperature

Thermistor and RTD temperature readings are derived from resistance measurements respectively. For that reason, it is not necessary to independently verify the accuracy of temperature measurements. As long as the resistance function meets or exceeds specifications, temperature function accuracy is automatically verified. However, temperature verification procedures are provided below for those who wish to separately verify temperature accuracy.

## RTD temperature

1. Connect the precision decade resistance box (Table 16-1) to the Model 2790 INPUT and SENSE jacks using four-wire connections. (See Figure 16-5 for similar connecting scheme.) Be sure the INPUTS switch is in the FRONT position.
2. Configure the Model 2790 temperature function for ${ }^{\circ} \mathrm{C}$ units and RTD temperature sensor $(\alpha=0.00385)$ as follows:
a. Press SHIFT then SENSOR. Note the unit displays the temperature units: UNITS: C.
b. Press ENTER.
c. Using the cursor and range keys, set the display as follows: SENS: 4W-RTD.
d. Press ENTER, and note the unit displays: TYPE: PT100.
e. Using the cursor and range keys, set the unit for the following display: TYPE: PT385.
f. Press ENTER to complete the temperature configuration process.
3. Select the temperature function by pressing the TEMP key.
4. Set the decade resistance box to each of the values shown in Table 16-7 and verify that the temperature readings are within the required limits.

Table 16-7
Four-wire RTD temperature verification reading limits

Applied resistance*	Reading limits   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )
$22.80 \Omega$	-190.06 to $-189.94^{\circ} \mathrm{C}$
$100.00 \Omega$	-0.06 to $+0.06^{\circ} \mathrm{C}$
$313.59 \Omega$	599.94 to $600.06^{\circ} \mathrm{C}$

[^20]
## Verifying frequency

Follow the steps below to verify the Model 2790 frequency function:

1. Connect the function generator to the Model 2790 INPUT jacks (See Figure 16-7). Be sure the INPUTS switch is in the FRONT position.
2. Set the function generator to output a $1 \mathrm{kHz}, 1 \mathrm{~V}$ RMS sine wave.
3. Select the Model 2790 frequency function by pressing the FREQ key.
4. Verify that the Model 2790 frequency reading is between 999.9 Hz and 1.0001 kHz .

Figure 16-7
Connections for Model 2790 frequency verification


## Model 7702 verification

Use these procedures to verify measurement accuracy through the Model 7702 40-Channel Multiplexer Card.

## Verifying DC voltage

Check DC voltage accuracy by applying accurate voltages from the DC voltage calibrator to the Model 7702 input terminals and verifying that the displayed readings fall within specified limits.

CAUTION Do not exceed 300V DC between Model 7702 INPUT H and L terminals or between any adjacent channels.

Follow these steps to verify DC voltage accuracy:

1. Connect the Model 7702 CH 1 H and L INPUT terminals to the DC voltage calibrator as shown in Figure 16-8.

NOTE Use shielded, low-thermal connections when testing the 100 mV and 1 V ranges to avoid errors caused by noise or thermal effects. Connect the shield to the calibrator's output LO terminal.

Figure 16-8
Connections for Model 7702 DC volts verification

2. Install the Model 7702 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the DC volts function by pressing the DCV key and set the Model 2790 to the 100 mV range. Close Channel 1 by pressing the CLOSE key and then keying in 101.
4. Set the calibrator output to 0.00000 mV DC and allow the reading to settle.
5. Enable the Model 2790 REL mode. Leave REL enabled for the remainder of the DC volts verification tests.
6. Source positive, negative, and full-scale voltages for each of the ranges listed in Table 16-8. For each voltage setting, be sure that the reading is within stated limits.
7. Press the OPEN key to open Channel 1.

Table 16-8

## Model 7702 DCV reading limits

Range	Applied   DC voltage*	Reading limits   (1 year, $18^{\circ}$ to $28^{\circ} \mathrm{C}$ )
100 mV	100.0000 mV	99.990 to 100.010 mV
1 V	1.000000 V	0.999963 to 1.000037 V
10 V	10.00000 V	9.99965 to 10.00035 V
100 V	100.0000 V	99.9936 to 100.0064 V
1000 V	300.000 V	299.976 to 300.024 V

[^21]
## Verifying AC voltage

Check AC voltage accuracy by applying accurate AC voltages at specific frequencies from the AC voltage calibrator to the Model 7702 inputs. Verify that the displayed readings fall within specified ranges.

CAUTION Do not exceed 300V RMS between Model 7702 INPUT H and L terminals or between adjacent channels, or $8 \times 10^{7} \mathrm{~V} \cdot \mathrm{~Hz}$ input, because instrument damage may occur.

Follow these steps to verify AC voltage accuracy:

1. Connect the Model 7702 CH 1 H and L INPUT terminals to the AC voltage calibrator as shown in Figure 16-9.

Figure 16-9
Connections for Model 7702 AC volts verification

2. Install the Model 7702 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the AC volts function by pressing the ACV key. Close Channel 1 by pressing the CLOSE key and then keying in 101.
4. Set the Model 2790 for the 100 mV range; make sure that REL is disabled.
5. Source 1 kHz and 50 kHz AC voltages for each of the ranges summarized in Table 16-9 and make sure that the respective Model 2790 readings fall within stated limits.
6. Press the OPEN key to open Channel 1.

Table 16-9
Model 7702 ACV reading limits

ACV range	Applied AC   voltage	$\mathbf{k H z}$ reading limits   (1 year, $\mathbf{1 8}^{\circ} \mathbf{C}$ to $\mathbf{2 8}{ }^{\circ} \mathbf{C}$ )	50kHz reading limits   (1 year, $18^{\circ} \mathbf{C}$ to $28^{\circ} \mathbf{C}$ )
100 mV	100.0000 mV	99.910 to 100.090 mV	99.830 to 100.170 mV
1 V	1.000000 V	0.99910 to 1.00090 V	0.99830 to 1.00170 V
10 V	10.00000 V	9.9910 to 10.0090 V	9.98300 to 10.0170 V
100 V	100.0000 V	99.910 to 100.090 V	99.830 to 100.170 V
750 V	$300.000 \mathrm{~V}^{*}$	299.60 to 300.40 V	299.27 to 300.73 V

* If the 5725 A amplifier is not available, change the $300 \mathrm{~V} @ 50 \mathrm{kHz}$ step to $220 \mathrm{~V} @ 50 \mathrm{kHz}$. Reading limits for $220 \mathrm{~V} @ 50 \mathrm{kHz}=219.36$ to 220.64 V .


## Verifying DC current

Check DC current accuracy by applying accurate DC currents from the DC current calibrator to the input terminals of the Model 7702 and verifying that the displayed readings fall within specified limits.

Follow these steps to verify DC current accuracy:

1. Connect the Model 7702 CH 41 H and L terminals to the calibrator as shown in Figure 16-10.

Figure 16-10

## Connections for Model 7702 DC current verification


2. Install the Model 7702 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the DC current measurement function by pressing the DCI key.
4. Set the Model 2790 for the 20 mA range. Close Channel 41 by pressing the CLOSE key and keying in 141.
5. Source positive and negative full-scale currents for each of the ranges listed in Table 16-10 and verify that the readings for each range are within stated limits.
6. Press the OPEN key to open Channel 41.

Table 16-10
Model 7702 DCI limits

DCI range	Applied   DC current*	Reading limits   (1 year, $\mathbf{1 8}^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )
20 mA	20.0000 mA	19.9892 to 20.01080 mA
100 mA	100.0000 mA	99.9100 to 100.0900 mA
1 A	1.000000 A	0.999160 to 1.000840 A
3 A	$3.000000 \mathrm{~A}^{* *}$	2.99628 to 3.00372 A

[^22]
## Verifying AC current

Check AC current accuracy by applying accurate AC voltage current at specific frequencies from the AC current calibrator to the Model 7702 input terminals and verifying that the displayed readings fall within specified limits. Follow these steps to verify AC current:

1. Connect the Model 7702 CH 41 H and L terminals to the calibrator as shown in Figure 16-11.

Figure 16-11
Connections for Model 7702 AC current verification

2. Install the Model 7702 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the AC current function by pressing the ACI key.
4. Set the Model 2790 for the 1 A range. Close Channel 41 by pressing the CLOSE key and keying in 141.
5. Source 1 A and $3 \mathrm{~A}, 1 \mathrm{kHz}$ full-scale AC currents as summarized in Table $16-11$ and verify that the readings are within stated limits.
6. Press the OPEN key to open Channel 41.

Table 16-11
Model 7702 ACI limits

ACI range	Applied   AC current	Reading limits @ 1 kHz   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )
1 A	1.000000 A	0.99860 to 1.00140 A
3A	$3.00000 \mathrm{~A}^{*}$	2.9937 to 3.0063 A

[^23]
## Verifying resistance

Check normal resistance by connecting accurate resistance values to the Model 7702 and verifying that its resistance readings are within the specified limits.

CAUTION Do not apply more than 300V between Model 7702 INPUT or SENSE H and L terminal or between any adjacent channels, or module damage could occur.

Follow these steps to verify resistance accuracy:

1. Using shielded Teflon or equivalent cables in a 4-wire configuration, connect the Model 7702 CH 1 H and L INPUT terminals and CH21 H and L SENSE terminals to the calibrator as shown in Figure 16-12.

Figure 16-12
Connections for Model 7702 resistance verification (100 $\mathbf{1 0}$ to $10 \mathrm{M} \Omega$ ranges)


NOTE Use shielded, low-thermal cables to minimize noise. Enable or disable calibrator external sense as indicated in procedure.
2. Install the Model 7702 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Set the calibrator for 4-wire resistance with external sense on.
4. Select the Model 27904 -wire resistance function by pressing the $\Omega 4 \mathrm{key}$. Close Channel 1 by pressing the CLOSE key and keying in 101.
5. Set the Model 2790 for the $100 \Omega$ range and make sure the FILTER is on. Enable OCOMP (offset-compensated ohms) by pressing SHIFT then OCOMP.
6. Recalculate reading limits based on actual calibrator resistance values.

Table 16-12
Limits for Model 7702 resistance verification

$\Omega$ Range	Nominal resistance	Nominal reading limits   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )	Recalculated limits**
100 $\%$	$100 \Omega$	99.9880 to $100.0120 \Omega$	to $\quad \Omega$
$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	0.999894 to $1.000106 \mathrm{k} \Omega$	to $\quad \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	9.99894 to $10.00106 \mathrm{k} \Omega$	to _ $\mathrm{k} \Omega$
$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	99.9890 to $100.0110 \mathrm{k} \Omega$	to $\quad \mathrm{k} \Omega$
$1 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$	0.999890 to $1.000110 \mathrm{M} \Omega$	to _M $\mathrm{M} \Omega$
$10 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	9.99370 to $10.00630 \mathrm{M} \Omega$	to __ M
$100 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$	99.4770 to $100.5230 \mathrm{M} \Omega$	to _ M

* Enable OCOMP for $100 \Omega$ range.
** Calculate limits based on actual calibration resistance values and Model 2790 and Model 7702 one-year resistance accuracy specifications. See Verification limits.

7. Source the nominal full-scale resistance values for the $100 \Omega-10 \mathrm{M} \Omega$ ranges summarized in Table 16-12 and verify that the readings are within calculated limits.
8. Connect the Model 7702 CH 1 and CH 21 terminals to the calibrator as shown in Figure 16-13.
9. Disable external sense on the calibrator.
10. Set the Model 2790 for the $100 \mathrm{M} \Omega$ range.
11. Source a nominal $100 \mathrm{M} \Omega$ resistance value and verify that the reading is within calculated limits for the $100 \mathrm{M} \Omega$ range.
12. Press the OPEN key to open Channel 1.

Figure 16-13
Connections for Model 7702 resistance verification (100MS range)


## Verifying temperature

Thermistor and RTD temperature readings are derived from resistance measurements. For that reason, it is not necessary to independently verify the accuracy of temperature measurements. As long as the resistance function meets or exceeds specifications, temperature function accuracy is automatically verified. However, temperature verification procedures are provided below for those who wish to separately verify temperature accuracy.

## RTD temperature

1. Connect the precision decade resistance box (Table 16-1) to the Model 7702 CH1 and CH21 H and L terminals using four-wire connections. (See Figure 16-12 for similar connecting scheme.)
2. Install the Model 7702 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the temperature function by pressing the TEMP key. Close Channel 1 by pressing the CLOSE key and keying in 101.
4. Configure the Model 2790 temperature function for ${ }^{\circ} \mathrm{C}$ units and RTD temperature sensor $(\alpha=0.00385)$ as follows:
a. Press SHIFT then SENSOR. Note the unit displays the temperature units: UNITS: C.
b. Press ENTER.
c. Using the cursor and range keys, set the display as follows: SENS: 4W-RTD.
d. Press ENTER and note the unit displays: TYPE: PT100.
e. Using the cursor and range keys, set the unit for the following display: TYPE: PT385.
f. Press ENTER to complete the temperature configuration process.
5. Set the decade resistance box to each of the values shown in Table 16-13 and verify that the temperature readings are within the required limits. Open channel 1 when finished.

Table 16-13
Model 7702 four-wire RTD temperature verification reading limits

Applied   resistance*	Reading limits   (1 year, $18^{\circ} \mathrm{C}$ to $\mathbf{2 8}^{\circ} \mathrm{C}$ )
$22.80 \Omega$	-190.06 to $-189.94^{\circ} \mathrm{C}$
$100.00 \Omega$	-0.06 to $+0.06^{\circ} \mathrm{C}$
$313.59 \Omega$	599.94 to $600.06^{\circ} \mathrm{C}$

[^24]
## Verifying frequency

Follow the steps below to verify the Model 2790 frequency function:

1. Connect the function generator to the Model 7702 CH 1 H and L INPUT terminals (see Figure 16-14.)
2. Install the Model 7702 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Set the function generator to output a $1 \mathrm{kHz}, 1 \mathrm{~V}$ RMS sine wave.
4. Select the Model 2790 frequency function by pressing the FREQ key. Close Channel 1 by pressing the CLOSE key and keying in 101.
5. Verify that the Model 2790 frequency reading is between 0.9999 kHz and 1.0001 kHz .

Figure 16-14
Connections for Model 7702 frequency verification


## Verifying ratio and average

Follow the procedure below to verify ratio and average.

## CAUTION Exceeding 300V between Model 7702 INPUT or SENSE H and L terminals may cause instrument damage.

1. Connect the Model 7702 CH 1 and CH 21 H and L terminals to the DC calibrator, as shown in Figure 16-15.
2. Install the Model 7702 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the Model 2790 DCV function and the 1 V range. Close Channel 1 by pressing the CLOSE key and keying in 101.
4. Select the Model 2790 RATIO function (press SHIFT then RATIO).
5. Set the calibrator output to 1.00000 V DC and allow the reading to settle.
6. Verify that the ratio reading is between 0.9999926 and 1.000074 .
7. Press OPEN to open Channel 1.

Figure 16-15
Connections for Model 7702 ratio and average verification


## Model 7751, 7752, and 7753 verification

Use these procedures to verify source and measurement accuracy of the Model 7751, 7752 , and 7753 modules.

NOTE Make sure the interlock is enabled. A Model 7753 must be installed in slot 1 .

## Recommended test equipment

In order to verify Model 7751/7752/7753 accuracy, you will need the equipment summarized in Table 16-14.

Table 16-14   Recommended equipment for Model 7751/7752/7753 verification	
Keithley Model 2001 Digital Multimeter: ${ }^{1}$ $500 \mathrm{~V}: \pm 47 \mathrm{ppm}$	
HP3458A Digital Multimeter: $50 \mathrm{~mA}: \pm 35 \mathrm{ppm}$	
Fluke 5700A Calibrator: ${ }^{1}$ $50 \mu \mathrm{~A}: \pm 250 \mathrm{ppm}$	
Characterized Resistors: ${ }^{2}$ Source I ohms: ${ }^{3}$	
$10 \Omega$	Vishay S102C-10R000-1\%
$100 \Omega$	Vishay S102C-100R00-1\%
$50 \Omega$	Vishay S102C-50R000-1\%
$20 \Omega$	Vishay S102C-20R000-1\%
Source V ohms: ${ }^{1,4}$	
$1 \mathrm{G} \Omega$	Caddock MG785-1000M-1\%
$100 \mathrm{M} \Omega$	Caddock MG721-100M-1\%
$10 \mathrm{M} \Omega$	Caddock MG712-10M-1\%
$1 \mathrm{M} \Omega$	Caddock MG712-1M-1\%

1. Necessary for Model 7751/7753 only.
2. Characterize all resistors using ohms function of DMM before use. All resistors are $1 \%$ tolerance, 0.5 W .
3. Temperature coefficient $<20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ required.
4. Voltage rating of at least 1000 V required.

NOTE Characterize test resistors using ohms function of either DMM listed in Table 16-14 before use.

WARNING Maximum common-mode voltage (voltage between any terminal and chassis) is 42 V peak.

Hazardous voltages may be present on terminals of test equipment and test resistors. Use standard safety practices to avoid personal injury due to electrical shock.

## Verifying the current source

Check the Model 7751/7752/7753 current source accuracy by setting the current source to a specific value and then measuring the current with a DMM.

Follow these steps to verify current source accuracy:

1. Connect the Model 7751/7752/7753 current source terminals to the DMM, as shown in Figure 16-16.
2. Install the Model 7751/7752/7753 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the DMM DC amps function and enable autorange.
4. Set the Model $7751 / 7752 / 7753$ source current to 50 mA as follows:
a. Press SHIFT, CARD, then CONFIG.
b. Select SLOT1: 7751, SLOT1: 7752, or SLOT1: 7753, then press ENTER.
c. Select the I-C submenu, then set the source to 50 mA .
d. Press EXIT to return to normal display.
5. Verify that the DMM reading is within these limits: 49.96 mA to 50.04 mA .

Figure 16-16
Connections for Model 7751/7752/7753 current source verification


## Verifying the voltage source (Model 7751 and 7753 only)

Check the Model 7751/7753 voltage source accuracy by setting the voltage source to a specific value and then measuring the voltage with a DMM.

Follow these steps to verify voltage source accuracy:

1. Connect the Model 7751/7753 voltage source terminals to the DMM as shown in Figure 16-17.
2. Install the Model 7751/7753 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the DMM DC volts function and enable autorange.
4. Set the Model $7751 / 7753$ source voltage to 500 V as follows:
a. Press SHIFT, CARD, then CONFIG.
b. Select SLOT1: 7751 or SLOT1: 7753, then press ENTER.
c. Select the V-C submenu, then set the source to 500 V .
d. Press EXIT to return to normal display.
5. Verify that the DMM reading is within these limits: 497.37 V to 502.63 V .

Figure 16-17
Connections for Model 7751/7753 voltage source verification


## Verifying the current measure input (Model 7751/7753 only)

Check the Model 7751/7753 current measure input accuracy by applying an input current and then measuring the voltage with the Model 2790.

Follow these steps to verify current measure input accuracy:

1. Connect the Model $7751 / 7753$ current measure input terminals to the current calibrator as shown in Figure 16-18.
2. Install the Model 7751/7753 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.
3. Select the Model 2790 DC volts function and enable autorange.
4. Set calibrator output current to $50 \mu \mathrm{~A}(7751)$ or $500 \mu \mathrm{~A}$ (7753), and turn on its output.
5. Using the CLOSE key, close channels 16 and 18. Slot 1 on the Model 7751/7753.
6. Verify that the Model 2790 voltage reading is within these limits: -9.949 V to -10.051V.

Figure 16-18
Connections for Model 7751/7753 current measure input verification
Model 7751 or 7753


## Verifying source-current resistance

Check source-current resistance accuracy by connecting accurate resistance values to the Model 7751/7752/7753 and verifying that Model 2790 resistance readings are within the specified limits.

Follow these steps to verify resistance accuracy:

1. Using shielded Teflon or equivalent cables in a 4 -wire configuration, connect the Model 7751/7752/7753 Bank 1 terminals to the characterized resistor as shown in Figure 16-19.
2. Install the Model 7751/7752/7753 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.

Figure 16-19
Connections for Model 7751/7752/7753 source-current resistance verification

3. Set the Model $7751 / 7752 / 7753$ source current to 50 mA as follows:
a. Press SHIFT, CARD, then CONFIG.
b. Select SLOT1: 7751, SLOT1: 7752, or SLOT1: 7753, then press ENTER.
c. Select the I-C submenu, then set the current source to 50 mA .
d. Press EXIT to return to normal display.
4. Using the CLOSE key, close the following channels: $1,2,17,18$, and 21.
5. Set the math function to display resistance as follows:
a. Press SHIFT then MATH.
b. Select S1IOHMS, then press ENTER.
c. Press EXIT to return to normal display.
6. Recalculate reading limits shown in Table $16-15$ based on the actual characterized resistance value.
7. Verify that the resistance reading is within the limits calculated in step 6.
8. Repeat steps 1 through 7 for the $20 \mathrm{~mA}, 10 \mathrm{~mA}$, and 1 mA source currents, as shown in Table 16-15, using the indicated test resistance value for each current. Note: close channel 24 before the 1 mA source test (dry circuit ohms).

## Table 16-15

Limits for Model 7751/7752/7753 source-current resistance verification

Source   current	Nominal   resistance	Nominal reading limits   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )	Recalculated limits*

[^25]
## Verifying source-voltage resistance (Model 7751/7753 only)

Check source-voltage resistance accuracy by connecting accurate resistance values to the Model 7751/7753 and verifying that Model 2790 resistance readings are within the specified limits.

Follow these steps to verify resistance accuracy:

1. Using shielded Teflon or equivalent cables in a 2-wire configuration, connect the Model 7751/7753 Bank 1 terminals to the characterized resistor as shown in Figure 16-20. See Table 16-16 (7751) or Table 16-17 (7753) for resistance values
2. Install the Model 7751/7753 in Slot 1 of the Model 2790, then turn on the power and allow the unit to warm up for two hours before proceeding. Be sure the front panel INPUTS switch is set to the REAR position.

Figure 16-20
Connections for Model 7751/7753 source-voltage resistance verification

3. Set the Model $7751 / 7753$ source voltage to 500 V as follows:
a. Press SHIFT, CARD, then CONFIG.
b. Select SLOT1: 7751 or SLOT1: 7753, then press ENTER.
c. Select the V-C submenu, then set the source to 500 V .
d. Press EXIT to return to normal display.
4. Using the CLOSE key, close the following slot 2 channels: $1,2,16,18,21,22$, and 23 .
5. Set the math function to display resistance as follows:
a. Press SHIFT then MATH.
b. Select S1VOHMS, then press ENTER.
c. Press EXIT to return to normal display.
6. Recalculate reading limits shown in Table 16-16 (7751) or Table 16-17 (7753) based on the actual characterized resistance value.
7. Verify that the resistance reading is within the limits calculated in step 6.
8. Repeat steps 1 through 7 for the remaining resistances and voltage source settings as shown in Table 16-16 (7751) or Table 16-17 (7753).

Table 16-16
Limits for Model 7751 source-voltage resistance verification

Source   current	Nominal   resistance	Nominal reading limits   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )	Recalculated limits* ${ }^{*}$
500 V	$1 \mathrm{G} \Omega$	0.98186 to $1.01814 \mathrm{G} \Omega$	$-\quad$ to
500 V	$100 \mathrm{M} \Omega$	98.585 to $101.415 \mathrm{M} \Omega$	$-\quad$ to $\Omega$
50 V	$100 \mathrm{M} \Omega$	94.048 to $105.952 \mathrm{M} \Omega$	$-\quad$ to $\Omega$
50 V	$10 \mathrm{M} \Omega$	9.4747 to $10.5253 \mathrm{M} \Omega$	$-\quad$ to $\Omega$

[^26]Table 16-17
Limits for Model 7753 source-voltage resistance verification

Source   current	Nominal   resistance	Nominal reading limits   (1 year, $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ )	Recalculated limits*

* Calculate limits based on actual characterized resistance values and Model 7753 resistance accuracy specifications. See Verification limits.


## 17

 Calibration- Environmental conditions - Covers environmental conditions, warm-up period, and line power requirements.
- Calibration considerations - Covers both considerations and safety precautions that should be observed when performing calibration.
- Calibration code - Discusses how to unlock calibration, both from the front panel and via remote, using the calibration code.
- Comprehensive calibration - Covers all the calibration steps necessary to calibrate all Model 2790 functions.
- Manufacturing calibration - Details the manufacturing calibration procedure, which is usually necessary in the field if one or more parts has been replaced.
- Model 7751, 7752, and 7753 calibration - Provides the necessary information for calibrating the Model 7751, 7752, and 7753 module current source.


## Introduction

Use the procedures in this section to calibrate the Model 2790. Calibration procedures include:

- Comprehensive calibration: Usually the only calibration required in the field.
- Manufacturing calibration: Usually only performed at the factory (unless the unit has been repaired).
- Model 7751, 7752, and 7753 calibration: Covers calibration procedures specific to the Model 7751, 7752, and 7753 modules.

WARNING The information in this section is intended only for qualified service personnel. Do not attempt these procedures unless you are qualified to do so.

All the procedures require accurate calibration equipment to supply precise DC and AC voltages, DC and AC currents, and resistance values. Comprehensive calibration can be performed any time by an operator either from the front panel or by using the SCPI commands sent either over the IEEE-488 bus or the RS-232 port. DC-only and AC-only calibration may be performed individually, if desired.

## Environmental conditions

Conduct the calibration procedures in a location that has:

- An ambient temperature of $18^{\circ}$ to $28^{\circ} \mathrm{C}\left(65^{\circ}\right.$ to $\left.82^{\circ} \mathrm{F}\right)$.
- A relative humidity of less than $60 \%$ unless otherwise noted.


## Warm-up period

Allow the Model 2790 SourceMeter Switch System to warm up for at least two hours before performing calibration.

If the instrument has been subjected to extreme temperatures (those outside the ranges stated above), allow extra time for the instrument's internal temperature to stabilize. Typically, allow one extra hour to stabilize a unit that is $10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ outside the specified temperature range.
Also, allow the test equipment to warm up for the minimum time specified by the manufacturer.

## Line power

The Model 2790 requires a line voltage of $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V},+10 \%,-5 \%$ and a line frequency of 50 or 60 Hz . Note that the line frequency is automatically sensed at power-up, but the line voltage must be manually set to either $100 \mathrm{~V} / 120 \mathrm{~V}$ or $220 \mathrm{~V} / 240 \mathrm{~V}$ as described in Section 18.

## Calibration considerations

When performing the calibration procedures:

- Make sure that the equipment is properly warmed up and connected to the appropriate input jacks. Also make sure that the correct front or rear terminals are selected with the INPUTS switch.
- Make sure the calibrator is in OPERATE before you complete each calibration step.
- Always let the source signal settle before calibrating each point.
- If an error occurs during calibration, the Model 2790 will generate an appropriate error message. See Appendix $G$ for more information.

WARNING Observe the following safety precautions when performing these tests:

- Some of the procedures in this section may expose you to dangerous voltages. Use standard safety precautions when such dangerous voltages are encountered to avoid personal injury or death caused by electric shock.
- For the front panel terminals only, the maximum common-mode voltage (voltage between INPUT LO and chassis ground) is 500 V peak. Exceeding this value may cause a breakdown in insulation, creating a shock hazard.
- For the Model 7751 and 7753 modules, the maximum commonmode voltage (voltage between any plug-in module terminal and chassis ground) is 42 V . Exceeding this value may cause a breakdown in insulation, creating a shock hazard.
- When using the front panel terminals simultaneously with plug-in modules, all cable insulation voltage ratings must equal or exceed the maximum voltage applied to either the front panel terminals or the plug-in module terminals.


## Calibration code

Before performing comprehensive calibration, you must first unlock calibration by entering the appropriate calibration code.

## Front panel calibration code

For front panel calibration, follow these steps:

1. Access the calibration menu by pressing SHIFT then TEST, then use the up or down range key to display TEST: CALIB. Press ENTER and note that the instrument displays the following:
CAL: DATES
2. Use the up or down range key to scroll through the available calibration items until the unit displays RUN, then press ENTER.
3. The Model 2790 then prompts you to enter a code:

CODE? 000000
(The factory default code is 002790 .) Use the left and right arrow keys to move among the digits; use the up range key to increment numbers and press the down range key to specify alphabetic letters. Confirm the code by pressing ENTER.
4. The Model 2790 allows you to define a new calibration code. Use the up and down range keys to toggle between yes and no. Choose N if you do not want to change the code. Choose Y if you want to change the code. The unit then prompts you to enter a new code. Enter the code and then press ENTER.

## Remote calibration code

If you are performing calibration over the IEEE-488 bus or the RS-232 port, send this command to unlock calibration:
:CAL:PROT:CODE '<8-character string>'.
The default code command is:
:CAL:PROT:CODE 'KI002790'.
To change the code via remote, simply send the :CAL:PROT:CODE command twice. First with the present code and then with the new code.

## Comprehensive calibration

The comprehensive calibration procedure calibrates the DCV, DCI, ACV, ACI, and ohms functions of the Model 2790. You can also choose to calibrate only the DCV/DCI and resistance or $\mathrm{ACV} / \mathrm{ACI}$ functions.

These procedures are usually the only calibration required in the field. Manufacturing calibration is normally done only at the factory, but it should also be done in the field if the unit has been repaired. See "Manufacturing calibration" later in this section for more information.

## Calibration cycle

Perform Model 2790 comprehensive calibration at least once a year, or every 90 days to ensure that the unit meets the corresponding specifications.

## Recommended equipment

Table 17-1 lists the recommended equipment you need for comprehensive, DC-only, and AC -only calibration procedures. You can use alternate equipment, such as a DC transfer standard and characterized resistors, as long as that equipment has specifications equal to or better than those listed in the table. In general, equipment uncertainty should be at least four times better than corresponding Model 2790 specifications.

Table 17-1
Recommended equipment for comprehensive calibration
Fluke 5700A Calibrator:

DC voltage	AC voltage   $(1 \mathrm{kHz}, 50 \mathrm{kHz}) *$	DC current	AC current   $(1 \mathrm{kHz})$	Resistance
$10 \mathrm{~V}: \pm 5 \mathrm{ppm}$	$10 \mathrm{mV}: \pm 710 \mathrm{ppm}$	$10 \mathrm{~mA}: \pm 60 \mathrm{ppm}$	$100 \mathrm{~mA}: \pm 190 \mathrm{ppm}$	$1 \mathrm{k} \Omega: \pm 13 \mathrm{ppm}$
$100 \mathrm{~V}: \pm 7 \mathrm{ppm}$	$100 \mathrm{mV}: \pm 200 \mathrm{ppm}$	$100 \mathrm{~mA}: \pm 70 \mathrm{ppm}$	$1 \mathrm{~A}: \pm 690 \mathrm{ppm}$	$10 \mathrm{k} \Omega: \pm 11 \mathrm{ppm}$
	$1 \mathrm{~V}: \pm 82 \mathrm{ppm}$	$1 \mathrm{~A}: \pm 110 \mathrm{ppm}$	$2 \mathrm{~A}: \pm 670 \mathrm{ppm}$	$100 \mathrm{~km} \Omega \pm 13 \mathrm{ppm}$
	$10 \mathrm{~V}: \pm 82 \mathrm{ppm}$			$1 \mathrm{M} \Omega: \pm 18 \mathrm{ppm}$
	$100 \mathrm{~V}: \pm 90 \mathrm{ppm}$			
	$700 \mathrm{~V}: \pm 85 \mathrm{ppm}$			

Miscellaneous equipment:
Keithley 8610 low-thermal shorting plug
Double banana plug to double banana plug shielded cable
BNC to double banana plug shielded cable

[^27]
## Aborting calibration

You can abort the front panel calibration process at any time by pressing EXIT. The instrument will then ask you to confirm your decision to abort with the following message:

## ABORT CAL?

Press EXIT to abort calibration at this point or press any other key to return to the calibration process.

NOTE The Model 2790 will not respond to any remote programming commands while the ABORT CAL? message is displayed.

## Front panel calibration

Follow the steps in the following paragraphs in the order shown for comprehensive, DC-only, and AC-only calibration procedures.

The procedures for front panel calibration include:

- Preparing the Model 2790 for calibration
- Front panel short and open calibration
- DC voltage calibration
- Resistance calibration
- DC current calibration
- AC voltage calibration
- AC current calibration
- Setting calibration dates


## Preparing the Model 2790 for calibration

1. Turn on the Model 2790 and allow it to warm up for at least two hours before performing a calibration procedure.
2. Start the calibration process as follows:
a. Access the calibration menu by pressing SHIFT then TEST. Then display TEST: CALIB using the up or down range key. Press ENTER.
b. Use the up or down range key to scroll through the available calibration menu items until the unit displays RUN, then press ENTER.
c. At the prompt, enter the calibration code. (The default code is 002790 .) Use the left and right arrow keys to move among the digits; use the up range key to increment numbers and press the down range key to specify alphabetic letters. Confirm the code by pressing ENTER.
d. Choose N at the prompt to proceed without changing the code, then press ENTER.
3. Choose which of the calibration tests summarized in Table 17-2 you want to run at the CAL: RUN prompt. Use the up and down range keys to scroll through the options; select your choice by pressing ENTER.

## Table 17-2

## Comprehensive calibration procedures

Procedure	Menu   choice	Procedures
Full calibration	ALL	All comprehensive calibration steps (DC and AC).
DCV, DCI, and ohms	DC	DC voltage, DC current, and resistance calibration.
ACV and ACI	AC	AC voltage and AC current calibration.

## Front panel short and open calibration

At the Model 2790 prompt for a front panel short, do the following:

1. Connect the Model 8610 low-thermal short to the instrument front panel INPUT and SENSE terminals as shown in Figure 17-1. Make sure the INPUTS button is not pressed in so that the front inputs are selected. Wait at least three minutes before proceeding to allow for thermal equilibrium.

Figure 17-1
Low-thermal short connections


NOTE Be sure to connect the low-thermal short properly to the HI, LO, and SENSE terminals. Keep drafts away from low-thermal connections to avoid thermal drift, which could affect calibration accuracy.
2. Press ENTER to start short-circuit calibration. While the unit is calibrating, it will display:
CALIBRATING
3. When the unit is finished with short-circuit calibration, it will display the following prompt:
OPEN CIRCUIT
4. Remove the calibration short and press ENTER. During this phase, the CALIBRATING message will be displayed.

NOTE Be sure to minimize movement near front input terminals. Excessive movements can cause capacitive coupling errors, which could affect calibration accuracy.

## DC volts calibration

After the front panel short and open procedure, the unit will prompt you for the first DC voltage: +10 V . Perform the following:

1. Connect the calibrator to the Model 2790 as shown in Figure 17-2. Wait three minutes to allow for thermal equilibrium before proceeding.

Figure 17-2
Connections for DC volts and ohms calibration


NOTE Although 4-wire connections are shown, the sense leads are connected and disconnected at various points in this procedure by turning calibrator external sense on or off as appropriate. If your calibrator does not have provisions for turning external sense on and off, disconnect the sense leads when external sensing is to be turned off and connect the sense leads when external sensing is to be turned on.
2. Set the calibrator to output DC volts and turn external sense off.
3. Perform the steps listed in Table 17-3 to complete DC volts calibration. For each calibration step:

- Set the calibrator to the indicated value and make sure it is in OPERATE.
- Press the ENTER key to calibrate that step.
- Wait until the Model 2790 finishes each step. (The unit will display the CALIBRATING message while calibrating.)

NOTE If your calibrator cannot output the values recommended in Table 17-3, use the left and right arrow keys and the up and down range keys to set the Model 2790 display value to match the calibrator output voltage.

Table 17-3
DC volts calibration summary

Calibration   step	Calibrator   voltage	Allowable range
+10 V	+10.00000 V	+9 V to +11 V
-10 V	-10.00000 V	-9 V to -11 V
100 V	+100.0000 V	+90 V to +110 V

## Resistance calibration

Completing the 100 V DC calibration step ends the DC voltage calibration procedure. The Model 2790 will then prompt you to connect $1 \mathrm{k} \Omega$. Follow these steps for resistance calibration:

1. Set the calibrator output for resistance, and turn on external sense.

NOTE Use external sense (4-wire $\Omega$ ) when calibrating all resistance ranges. Be sure that the calibrator external sense mode is turned on.
2. Perform the calibration steps summarized in Table 17-4. For each step:

- Set the calibrator to the indicated value, and place the unit in operate. (If the calibrator cannot output the exact resistance value, use the Model 2790 left and right arrow keys and the range keys to adjust the Model 2790 display to agree with the actual calibrator resistance.)
- Press the ENTER key to calibrate each point.
- Wait for the Model 2790 to complete each step before continuing.

Table 17-4
Resistance calibration summary

Calibration   step	Calibrator   resistance*	Allowable   range
$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	$0.9 \mathrm{k} \Omega$ to $1.1 \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$9 \mathrm{k} \Omega$ to $11 \mathrm{k} \Omega$
$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$90 \mathrm{k} \Omega$ to $110 \mathrm{k} \Omega$
$1 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$	$0.9 \mathrm{M} \Omega$ to $1.1 \mathrm{M} \Omega$

[^28]
## DC current calibration

After the $1 \mathrm{M} \Omega$ resistance point has been calibrated, the unit will prompt you to apply 10 mA . Follow these steps for DC current calibration:

1. Connect the calibrator to the AMPS and INPUT LO terminals of the Model 2790 as shown in Figure 17-3.

Figure 17-3
Connections for DC and AC amps calibration

2. Calibrate each current step summarized in Table 17-5. For each step:

- Set the calibrator to the indicated DC current and make sure the unit is in OPERATE.
- Make sure the Model 2790 display indicates the correct calibration current.
- Press ENTER to complete each step.
- Allow the Model 2790 to finish each step.

NOTE If you are performing DC-only calibration, proceed to "Setting calibration dates and saving calibration."

Table 17-5
DC current calibration summary

Calibration   step	Calibrator   current	Allowable   range
10 mA	10.00000 mA	9 mA to 11 mA
100 mA	100.0000 mA	90 mA to 110 mA
1 A	1.000000 A	0.9 A to 1.1 A

## AC voltage calibration

Follow these steps for AC voltage calibration:

1. Connect the calibrator to the Model 2790 INPUT HI and LO terminals as shown in Figure 17-4.

Figure 17-4

## Connections for AC volts calibration


2. Perform the calibration steps summarized in Table 17-6. For each step:

- Set the calibrator to the indicated value and make sure the calibrator is in OPERATE.
- Press ENTER to complete each step.
- Wait until the Model 2790 completes each step.

Table 17-6
AC voltage calibration summary

Calibration step	Calibrator voltage, frequency
10 mV AC at 1 kHz	$10.00000 \mathrm{mV}, 1 \mathrm{kHz}$
100 mV AC at 1 kHz	$100.0000 \mathrm{mV}, 1 \mathrm{kHz}$
100 mV AC at 50 kHz	$100.0000 \mathrm{mV}, 50 \mathrm{kHz}$
1 V AC at 1 kHz	$1.000000 \mathrm{~V}, 1 \mathrm{kHz}$
1 V AC at 50 kHz	$1.000000 \mathrm{~V}, 50 \mathrm{kHz}$
10 V AC at 1 kHz	$10.00000 \mathrm{~V}, 1 \mathrm{kHz}$
10 V AC at 50 kHz	$10.00000 \mathrm{~V}, 50 \mathrm{kHz}$
100 V AC at 1 kHz	$100.0000 \mathrm{~V}, 1 \mathrm{kHz}$
100 V AC at 50 kHz	$100.0000 \mathrm{~V}, 50 \mathrm{kHz}$
700 V AC at 1 kHz	$700.000 \mathrm{~V}, 1 \mathrm{kHz}$

## AC current calibration

After the 700 VAC at 1 kHz point has been calibrated, the unit will prompt you for 100 mA at 1 kHz . Follow these steps for AC current calibration:

1. Connect the calibrator to the AMPS and INPUT LO terminals of the Model 2790 as shown in Figure 17-3.
2. Perform the calibration steps summarized in Table 17-7. For each step:

- Set the calibrator to the indicated current and frequency. Make sure the unit is in OPERATE.
- Press ENTER to complete each calibration step.
- Allow the unit to complete each step before continuing.

Table 17-7
AC current calibration summary

Calibration step	Calibrator current,   frequency
100 mA at 1 kHz	$100.0000 \mathrm{~mA}, 1 \mathrm{kHz}$
1 A at 1 kHz	$1.000000 \mathrm{~A}, 1 \mathrm{kHz}$
2 A at 1 kHz	$2.000000 \mathrm{~A}, 1 \mathrm{kHz}$

## Setting calibration dates and saving calibration

At the end of the calibration procedure, the instrument will display the CALIBRATION COMPLETE message. Press ENTER to continue. The Model 2790 will prompt you to enter the calibration date and the calibration due date.

Set these dates as follows:

1. At the CAL DATE: prompt, use the left and right arrow keys and the range keys to set the calibration date, then press ENTER.
2. The unit will then prompt you to enter the next calibration due date with this prompt: CAL NDUE:. Use the left and right arrow keys and the range keys to set the calibration due date, then press ENTER.
3. The unit will prompt you to save new calibration constants with this message: SAVE CAL? YES. To save the new constants, press ENTER. If you do not want to save the new constants, press the down range key to toggle to NO, then press ENTER.
[^29]
## Remote calibration

Follow the steps in this section to perform comprehensive procedures via remote. See Appendix G for a detailed list and description of remote calibration commands.

When sending calibration commands, be sure that the Model 2790 completes each step before sending the next command. You can do so either by observing the front panel CALIBRATING message or by detecting the completion of each step over the bus. (See "Detecting calibration step completion" in Appendix G.)

The procedures for calibrating the Model 2790 via remote include:

- Preparing the Model 2790 for calibration
- Front panel short and open calibration
- DC volts calibration
- Resistance calibration
- DC current calibration
- AC volts calibration
- AC current calibration
- Programming calibration dates
- Saving calibration constants
- Locking out calibration

NOTE As with front panel calibration, you can choose to perform comprehensive, DC-only, or AC-only calibration. Be sure to include a space character between each command and parameter.

## Preparing the Model 2790 for calibration

1. Connect the Model 2790 to the IEEE- 488 bus of the computer using a shielded IEEE-488 cable, such as the Keithley Model 7007, or connect the unit to a computer through the RS-232 port using a straight-through 9-pin to 9 -pin cable (use a 9-25-pin adapter if necessary).
2. Turn on the Model 2790 and allow it to warm up for at least two hours before performing calibration.
3. Make sure the primary address of the Model 2790 is the same as the address specified in the program that you will be using to send commands. (Use the GPIB key.)
4. Unlock the calibration function by sending this command:
:CAL:PROT:CODE 'KI002790'
(The above command shows the default code, KI002790. Substitute the correct code if changed.)
5. Send the following command to initiate calibration:
:CAL:PROT:INIT

## Short and open calibration

1. Connect the Model 8610 low-thermal short to the instrument INPUT and SENSE terminals as shown in Figure 17-1. Make sure the INPUTS button is not pressed in so that the front inputs are active. Wait at least three minutes before proceeding to allow for thermal equilibrium.

NOTE Be sure to connect the low-thermal short properly to the HI, LO, and SENSE terminals. Keep drafts away from low-thermal connections to avoid thermal drift, which could affect calibration accuracy.
2. Send the following command:
:CAL:PROT:DC:STEP1
3. After the Model 2790 completes this step, remove the low-thermal short and then send this command:
:CAL:PROT:DC:STEP2

NOTE Be sure to minimize movement near front input terminals. Excessive movements can cause capacitive coupling errors, which could affect calibration accuracy.

## DC volts calibration

After the front panel short and open steps, do the following:

1. Connect the calibrator to the Model 2790 as shown in Figure 17-2. Allow three minutes for thermal equilibrium.

NOTE Although 4-wire connections are shown, the sense leads are connected and disconnected at various points in this procedure by turning calibrator external sense on or off as appropriate. If your calibrator does not have provisions for turning external sense on and off, disconnect the sense leads when external sensing is to be turned off and connect the sense leads when external sensing is to be turned on.
2. Perform the calibration steps summarized in Table 17-8. For each step:

- Set the calibrator to the indicated voltage and make sure the unit is in operate. (Use the recommended voltage if possible.)
- Send the indicated programming command. (Change the voltage parameter if you are using a different calibration voltage.)
- Wait until the Model 2790 completes each step before continuing.

NOTE Ensure the calibrator has settled to the final value. You can do so by verifying that the "Settled" indicator is off or by using the *OPC? (operation complete) query.

Table 17-8
DC voltage calibration programming steps

Calibration   step	Calibrator   voltage	Calibration command*	Parameter   range
+10 V	+10.00000 V	:CAL:PROT:DC:STEP3 10	9 to 11
-10 V	-10.00000 V	:CAL:PROT:DC:STEP4-10	-9 to -11
100 V	100.0000 V	:CAL:PROT:DC:STEP5 100	90 to 110

*Use recommended value where possible. Change parameter accordingly if using a different calibrator voltage.

## Resistance calibration

Follow these steps for resistance calibration:

1. Set the calibrator to the resistance mode and turn on external sensing.

NOTE Use external sense (4-wire $\Omega$ ) when calibrating all resistance ranges. Be sure that the calibrator external sense mode is turned on.
2. Perform the calibration steps summarized in Table 17-9. For each step:

- Set the calibrator to the indicated resistance and make sure the unit is in operate. (Use the recommended resistance or the closest available value.)
- Send the indicated programming command. (Change the command parameter if you are using a different calibration resistance than that shown.)
- Wait until the Model 2790 completes each step before continuing.

Table 17-9
Resistance calibration programming steps

Calibration   step	Calibrator   resistance	Calibration command*	Parameter range
$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	:CAL:PROT:DC:STEP6 1E3	0.9 E 3 to 1.1E3
$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	:CAL:PROT:DC:STEP7 10E3	9E3 to 11E3
$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	:CAL:PROT:DC:STEP8 100E3	90 E 3 to 110E3
$1 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$	:CAL:PROT:DC:STEP9 1E6	900 E 3 to 1.1E6

[^30]
## DC current calibration

After the $1 \mathrm{M} \Omega$ resistance point has been calibrated, follow these steps for DC current calibration:

1. Connect the calibrator to the AMPS and INPUT LO terminals of the Model 2790 as shown in Figure 17-3.
2. Perform the calibration steps listed in Table 17-10. For each step:

- Set the calibrator to the indicated current and make sure the unit is in operate. (Use the recommended current if possible.)
- Send the indicated programming command. (Change the current parameter if you are using a different calibration current.)
- Wait until the Model 2790 completes each step before continuing.


## NOTE If you are performing DC-only calibration, proceed to "Programming calibration dates."

Table 17-10
DC current calibration programming steps

Calibration   step	Calibrator   current	Calibration command*	Parameter range
10 mA	10.00000 mA	:CAL:PROT:DC:STEP10 10E-3	$9 \mathrm{E}-3$ to 11E-3
100 mA	100.00000 mA	:CAL:PROT:DC:STEP11 100E-3	$90 \mathrm{E}-3$ to 110E-3
1 A	1.000000 A	:CAL:PROT:DC:STEP12 1	0.9 to 1.1

*Change parameter if using different current.

## AC voltage calibration

Follow these steps for AC voltage calibration:

1. Connect the calibrator to the Model 2790 INPUT HI and LO terminals as shown in Figure 17-4.
2. Perform the calibration steps summarized in Table 17-11. For each step:

- Set the calibrator to the indicated voltage and frequency. Make sure the unit is in operate. (You must use the stated voltage and frequency.)
- Send the indicated programming command.
- Wait until the Model 2790 completes each step before continuing.

Table 17-11
AC voltage calibration programming steps

Calibration step	Calibrator voltage,   frequency	Calibration command
10 mV AC at 1 kHz	$10.00000 \mathrm{mV}, 1 \mathrm{kHz}$	:CAL:PROT:AC:STEP1
100 mV AC at 1 kHz	$100.0000 \mathrm{mV}, 1 \mathrm{kHZ}$	:CAL:PROT:AC:STEP2
100 mV AC at 50 kHz	$100.0000 \mathrm{mV}, 50 \mathrm{kHz}$	:CAL:PROT:AC:STEP3
1 VAC at 1 kHz	$1.000000 \mathrm{~V}, 1 \mathrm{kHz}$	:CAL:PROT:AC:STEP4
1 VAC at 50 kHz	$1.000000 \mathrm{~V}, 50 \mathrm{kHz}$	:CAL:PROT:AC:STEP5
10 VAC at 1 kHz	$10.00000 \mathrm{~V}, 1 \mathrm{kHz}$	:CAL:PROT:AC:STEP6
10 VAC at 50 kHz	$10.00000 \mathrm{~V}, 50 \mathrm{kHz}$	:CAL:PROT:AC:STEP7
100 VAC at 1 kHz	$100.0000 \mathrm{~V}, 1 \mathrm{kHz}$	:CAL:PROT:AC:STEP8
100 VAC at 50 kHz	$100.0000 \mathrm{~V}, 50 \mathrm{kHz}$	:CAL:PROT:AC:STEP9
700 VAC at 1 kHz	$700.000 \mathrm{~V}, 1 \mathrm{kHz}$	:CAL:PROT:AC:STEP10

## AC current calibration

Follow these steps for AC current calibration:

1. Connect the calibrator to the AMPS and INPUT LO terminals of the Model 2790 as shown in Figure 17-3.
2. Perform the calibration steps summarized in Table 17-12. For each step:

- Set the calibrator to the indicated current and frequency. Make sure the unit is in operate. (You must use the stated current and frequency.)
- Send the indicated programming command.
- Wait until the Model 2790 completes each step before continuing.

Table 17-12
AC current calibration programming steps

Calibration step	Calibrator current,   frequency	Calibration command
100 mA at 1 kHz	$100.0000 \mathrm{~mA}, 1 \mathrm{kHz}$	:CAL:PROT:AC:STEP11
1 A at 1 kHz	$1.000000 \mathrm{~A}, 1 \mathrm{kHz}$	:CAL:PROT:AC:STEP12
2 A at 1 kHz	$2.000000 \mathrm{~A}, 1 \mathrm{kHz}$	:CAL:PROT:AC:STEP13

## Programming calibration dates

Program the present calibration date and calibration due date by sending the following commands:
:CAL:PROT:DATE <yyyy>, <mm>, <dd>
:CAL:PROT:NDUE <yyyy>, <mm>, <dd>
For example, the following commands assume calibration dates of 3/15/2002 and 3/15/2003 respectively:
:CAL:PROT:DATE 2002, 3, 15
:CAL:PROT:NDUE 2003, 3, 15

## Saving calibration constants

After completing the calibration procedure, send the following command to save the new calibration constants:
:CAL:PROT:SAVE

NOTE Calibration constants will not be saved unless the :CAL:PROT:SAVE command is sent.

## Locking out calibration

After saving calibration, send the following command to lock out calibration:
:CAL:PROT:LOCK

## Manufacturing calibration

The manufacturing calibration procedure is normally performed only at the factory, but the necessary steps are included here in case the unit is repaired and requires these calibration procedures.

NOTE If the unit has been repaired, the entire comprehensive calibration procedure should also be performed in addition to the manufacturing calibration procedure.

## Firmware revision level

The manufacturing calibration procedure depends on the firmware revision level, either revision A03 and lower or revision A04 and higher. The instrument displays the firmware revision as part of the power-up cycle. Be sure to use the correct procedure as outlined below.

## Recommended test equipment

Table 17-13 summarizes the test equipment required for the manufacturing calibration steps. Note that the equipment depends on the firmware revision level. See Table 17-1 for equipment needed to complete the comprehensive calibration steps.

Table 17-13
Recommended equipment for manufacturing calibration

Firmware revision A03 and lower	Firmware revision A04 and higher
Stanford Research Systems DS345 Function Generator:   1 V RMS, $3 \mathrm{~Hz}, \pm 5 \mathrm{ppm}$   1 V RMS, $1 \mathrm{kHz}, \pm 5 \mathrm{ppm}$	Stanford Research Systems DS345 Function Generator:   1 V RMS, $1 \mathrm{kHz}, \pm 5 \mathrm{ppm}$
Keithley Model 2001 Digital Multimeter: $1 \mathrm{~V}, 3 \mathrm{~Hz} \mathrm{AC}, \pm 0.13 \%$	Fluke 5700A Calibrator:   1V RMS, 10Hz, $\pm 260 \mathrm{ppm}$
Keithley 7797 Calibration/Extender Board	Keithley 7797 Calibration/Extender Board

## Extender board preparation

Before performing manufacturing calibration, short the output HI, LO, SHI, and SLO terminals of the Keithley 7797 Calibration/Extender/Test Board together using clean, solid copper wires. These connections will form a low-thermal short necessary for the manufacturing calibration procedure. The Calibration Extender Test Board should then be installed in scanner Slot \#1.

## Test equipment connections

Connections for steps requiring the calibrator are shown in Figure 17-5 and Figure 17-6 shows function generator connections. Refer to the test procedures for specific steps.

## Unlocking manufacturing calibration

To unlock manufacturing calibration, press and hold in the OPEN key while turning on the power.

Figure 17-5

## Calibrator connections for manufacturing calibration



Figure 17-6
Function generator connections for manufacturing calibration


## Calibration for firmware revision A04 and higher

## Front panel manufacturing calibration (firmware revision A04 and higher)

1. Install the shorted calibration extender board (see "Extender board preparation" earlier in this section) in scanner card Slot 1 and select the rear inputs with the INPUTS switch. Allow three minutes for thermal equilibrium.
2. Press in and hold the OPEN key while turning on the power.
3. Press SHIFT then TEST, then display CALIB: TEST with the up or down range key. Press ENTER, select RUN, then enter the appropriate calibration code (default: 002790).
4. Select ALL at the CAL:RUN prompt.
5. Press ENTER to perform the first manufacturing calibration step.
6. Perform the entire front panel comprehensive calibration procedure. See "Comprehensive calibration" earlier in this section.
7. After the last AC current calibration step, the instrument will prompt you to enter 10 Hz at 1 V RMS and 1 kHz with the following prompts:

- Low-frequency cal: Connect the calibrator to the front panel INPUT jacks (Figure 17-5). Select the front input jacks with the INPUTS switch. Set the calibrator to output a 1 V RMS, 10 Hz sine wave. Use the left and right arrow keys and the range keys to adjust the display to agree with the calibrator amplitude, then press ENTER. If an error is reported after performing this step, refer to Table 17-14 for troubleshooting.
- Frequency cal: Connect the function generator to the front panel INPUT jacks (Figure 17-6). Set the generator to output a 1V RMS, 1 kHz sine wave. Enter 1.000000 kHz at the prompt, then press ENTER.

8. Set the calibration dates, then save calibration to complete the process.

Table 17-14
$1 \mathrm{~V}, 10 \mathrm{~Hz}$ frequency errors

	Revision A03   and lower	Revision A04   and higher
$1 \mathrm{~V}, 3 \mathrm{~Hz}$ calibration	- No +499 error   - Correct results   $1 \mathrm{~V}, 10 \mathrm{~Hz}$ calibration	- Error +499   - Failed cal step   - No +499 error   - Incorrect results

## Remote manufacturing calibration (firmware revision A04 and higher)

1. Install the shorted calibration extender board (see "Extender board preparation" earlier in this section) in scanner card Slot 1 and select the rear inputs with the INPUTS switch. Allow three minutes for thermal equilibrium.
2. Press in and hold the OPEN key while turning on the power.
3. Enable calibration by sending the :CODE command. For example, the default command is:
:CAL:PROT:CODE 'KI002790'
4. Initiate calibration by sending the following command:
:CAL:PROT:INIT
5. Calibrate step 0 with the following command:
:CAL:PROT:DC:STEP0
6. Perform the entire remote comprehensive calibration procedure. See "Comprehensive calibration" earlier in this section.
7. Connect the calibrator to the Model 2790 INPUT jacks as shown in Figure 17-5. Select the front input jacks with the INPUTS switch.
8. Set the calibrator to output a 1 V RMS, 10 Hz sine wave, then send the following command:
:CAL:PROT:AC:STEP14 <Cal_voltage>
Here $<$ Cal_voltage $>$ is the actual 10 Hz calibrator signal amplitude. If an error is reported after performing this step, refer to Table 17-14 for troubleshooting.
9. Connect the function generator to the Model 2790 INPUT jacks as shown in Figure 17-6.
10. Set the generator to output a 1 V RMS, 1 kHz sine wave, then send the following command:
:CAL:PROT:AC:STEP15 1E3
11. Send the following commands to set calibration dates, save calibration, and lock out calibration:
:CAL:PROT:DATE <yyyy>, <mm>, <dd>
:CAL:PROT:NDUE <yyyy>, <mm>, <dd>
:CAL:PROT:SAVE
:CAL:PROT:LOCK

## Calibration for firmware revision A03 and lower

## Measuring function generator signal amplitude

The 3 Hz function generator signal amplitude must be accurately measured using the digital multimeter listed in Table 17-13. Proceed as follows:

1. Connect the function generator output to the digital multimeter INPUT jacks. (See Figure 17-6 for typical connections.)
2. Turn on the function generator and multimeter. Allow a two-hour warm-up period before measuring.
3. Set the function generator to output a 1 V RMS sine wave at 3 Hz ; measure and record the signal amplitude.

## Front panel manufacturing calibration (firmware revision A03 and lower)

1. Install the shorted calibration extender board (see "Extender board preparation" earlier in this section) in scanner card Slot 1 and select the rear inputs with the INPUTS switch. Allow three minutes for thermal equilibrium.
2. Press in and hold the OPEN key while turning on the power.
3. Press SHIFT then TEST, then display CALIB: TEST with the up or down range key. Press ENTER, select RUN, then enter the appropriate calibration code (default: 002790).
4. Select ALL at the CAL:RUN prompt.
5. Press ENTER to perform the first manufacturing calibration step.
6. Perform the entire front panel comprehensive calibration procedure. See "Comprehensive calibration" earlier in this section.
7. Connect the function generator to the Model 2790 front panel INPUT jacks as shown in Figure 17-6. Select the front input jacks with the INPUTS switch.
8. After the last AC current calibration step, the instrument will prompt you to enter 3 Hz at 1 V RMS and 1 kHz with the following prompts:

- Low-frequency cal: Set the function generator to output a 1 V RMS, 3 Hz sine wave. Use the left and right arrow keys and the range keys to adjust the display to agree with the generator amplitude you measured previously, then press ENTER.
- Frequency cal: Set the function generator to output a 1 V RMS, 1 kHz sine wave. Enter 1.000000 kHz at the prompt, then press ENTER.

9. Set the calibration dates, then save calibration to complete the process.

## Remote manufacturing calibration (firmware revision A03 and lower)

1. Install the shorted calibration extender board (see "Extender board preparation" earlier in this section) in scanner card Slot 1 and select the rear inputs with the INPUTS switch. Allow three minutes for thermal equilibrium.
2. Press in and hold the OPEN key while turning on the power.
3. Enable calibration by sending the :CODE command. For example, the default command is:
:CAL:PROT:CODE 'KI002790'
4. Initiate calibration by sending the following command:
:CAL:PROT:INIT
5. Calibrate step 0 with the following command:
:CAL:PROT:DC:STEP0
6. Perform the entire remote comprehensive calibration procedure. See "Comprehensive calibration" earlier in this section.
7. Connect the function generator to the Model 2790 INPUT jacks as shown in Figure 17-6. Select the front input jacks with the INPUTS switch.
8. Set the generator to output a 1 V RMS, 3 Hz sine wave, then send the following command:
:CAL:PROT:AC:STEP14<Cal_voltage>
Here <Cal_voltage> is the actual 3 Hz generator signal amplitude you measured previously.
9. Set the generator to output a 1 V RMS, 1 kHz sine wave, then send the following command:
:CAL:PROT:AC:STEP15 1E3
10. Send the following commands to set calibration dates, save calibration, and lock out calibration:
:CAL:PROT:DATE <yyyy>, <mm>, <dd>
:CAL:PROT:NDUE <yyyy>, <mm>, <dd>
:CAL:PROT:SAVE
:CAL:PROT:LOCK

## Model 7751, 7752, and 7753 calibration

The following procedures calibrate the current source of the Model 7751/7752/7753 module. The voltage source and I/V converter do not need calibration.

> WARNING For the Model 7751, 7752, and 7753 modules, the maximum common-mode voltage (voltage between any module terminal and chassis ground) is 42 V . Exceeding this value may cause a breakdown in insulation, creating a shock hazard.

NOTE The source calibration procedure below needs to be performed only once every two years for the module sources to meet their source output accuracy specifications. However, you must calibrate the Model 2790 mainframe at least once a year to meet Model 7751/7752/7753 resistance accuracy specifications.

Make sure the interlock is enabled.

## Recommended test equipment

In order to calibrate the Model 7751/7752/7753, you will need the equipment summarized in Table 17-15.

Table 17-15
Recommended equipment for
Model 7751/7752/7753 calibration

## HP3458A Digital Multimeter:

$50 \mathrm{~mA}: \pm 35 \mathrm{ppm}$

## Model 7751/7752/7753 calibration

1. Connect the Model 7751/7752/7753 current source output terminals (ISOURCE HI and ISOURCE LO) to the DMM AMPS and INPUT LO terminals, as shown in Figure 17-7.
2. Turn on the DMM and allow the unit to warm up for the period specified by the manufacturer. Select the DCI function and enable autorange.
3. With the power off, install the Model 7751/7752/7753 in Slot 1 and select the rear inputs with the INPUTS switch.
4. Press in and hold the Model 2790 OPEN key while turning on the power. Allow a two-hour warm-up period before proceeding.
5. Enable calibration by sending the :CODE command. For example, the default command is:
:CAL:PROT:CODE 'KI002790'
6. Initiate calibration by sending the following command:
:CAL:PROT:CARD1:INIT
7. Send this command to set the current source DAC to the low current value: :CAL:PROT:CARD1:ISO:STEP0
8. Note and record the DMM current reading as the low current value.
9. Send this command to set the current source DAC to the high current value: :CAL:PROT:CARD1:ISO:STEP1
10. Note and record the DMM current reading as the high current value.
11. Send this command using the $<$ low $>$ and $<$ high $>$ current values you measured in steps 8 and 10:
:CAL:PROT:CARD1:ISO:DATA <low>, <high>
12. Send the following commands to save calibration and lock out calibration:
:CAL:PROT:CARD1:SAVE
:CAL:PROT:CARD1:LOCK

Figure 17-7
Connections for Model 7751/7752/7753 current source calibration


## 18

## Routine Maintenance

- Setting the line voltage and replacing the line fuse - Includes procedures for setting the line voltage and replacing the line fuse located in the power module on the rear panel.
- Replacing the AMPS fuse - Covers replacing the front panel AMPS fuse.
- Replacing the Model 7702 plug-in module amps fuses - Discusses the method for replacing the two fuses that protect the Model 7702 current inputs.
- Replacing Model 7751/7752/7753 plug-in module fuses — Discusses the method for replacing the four Model 7751/7752/7753 fuses.
- Replacing Non-volatile RAM battery - Details replacing the battery that powers non-volatile RAM.
- Plug-in module relay closure count - Covers reading the relay closure count and resetting the relay closure count.
- Front panel tests - Covers tests for the front panel keys and the display.


## Introduction

The information in this section deals with routine type maintenance and includes procedures for setting the line voltage, replacing the Model 2790 line and front terminal AMPS fuses, and replacing the amps fuses for the Model 7702 plug-in module. Replacement of the Model 2790 non-volatile RAM battery. Reading and resetting the module relay card. Closure count is also covered.

## Setting the line voltage and replacing the line fuse

## WARNING Disconnect the line cord at the rear panel and remove all test leads connected to the instrument (front and rear) before replacing the line fuse.

The power line fuse is located in the power module next to the AC power receptacle (see Figure 18-1). If the line voltage must be changed or if the line fuse requires replacement, perform the following steps:

1. Place the tip of a flat-blade screwdriver into the power module by the fuse holder assembly (see Figure 18-1). Gently push in and to the left. Release pressure on the assembly and its internal spring will push it out of the power module.
2. Remove the fuse and replace it with the type listed in Table 18-1.

CAUTION For continued protection against fire or instrument damage, replace the fuse only with the type and rating listed. If the instrument repeatedly blows fuses, locate and correct the cause of the trouble before replacing the fuse.
3. If configuring the instrument for a different line voltage, remove the line voltage selector from the assembly and rotate it to the proper position. When the selector is installed into the fuse holder assembly, the correct line voltage appears inverted in the window.

## CAUTION Operating the Model 2790 on the wrong line voltage may result in instrument damage.

4. Install the fuse holder assembly into the power module by pushing it in until it locks in place.

Figure 18-1

## Power module

Model 2790


Fuse Holder Assembly

Table 18-1
Power line fuse

Line Voltage	Rating	Keithley   part no.
$100 / 120 \mathrm{~V}$	$1 / 2 \mathrm{~A}, 250 \mathrm{~V}, 5 \times 20 \mathrm{~mm}$, slow-blow	FU-71
$200 / 240 \mathrm{~V}$	$1 / 4 \mathrm{~A}, 250 \mathrm{~V}, 5 \times 20 \mathrm{~mm}$, slow-blow	FU-96-4

## Replacing the AMPS fuse

The front panel AMPS fuse protects the Model 2790 AMPS current input from an overcurrent condition. Follow the steps below to replace the AMPS fuse.

WARNING Make sure the instrument is disconnected from the power line and other equipment before replacing the AMPS fuse.

1. Turn off the power and disconnect the power line and test leads.
2. Rotate the fuse carrier one-quarter turn counterclockwise. (See Figure 18-2.) Release pressure on the jack and its internal spring will push the fuse carrier out of the socket.
3. Remove the fuse and replace it with the same type: 3A, 250 V , fast-blow, Keithley part number FU-99-1.

CAUTION Do not use a fuse with a higher current rating than specified or instrument damage may occur. If the instrument repeatedly blows fuses, locate and correct the cause of the trouble before replacing the fuse.
4. Install the new fuse by reversing the above procedure.

Figure 18-2
AMPS fuse
Model 2790


Rotate Counterclockwise

## Replacing Model 7702 plug-in module amps fuses

WARNING The information in this section is intended only for qualified service personnel. Do not perform these procedures unless you are qualified to do so.

Make sure that all plug-in module connections are de-energized and disconnected before replacing module amps fuses.

1. Turn off the power and disconnect external connections from the Model 7702.
2. Open the Model 7702 top cover.
3. Locate the amps fuses for CH 41 and CH 42 (see Figure 18-3).
4. Remove the circuit board from the bottom plastic housing by removing the two bottom screws.

Figure 18-3
Model 7702 amps fuses

5. De-solder the blown CH 41 or CH 42 fuse as required, taking care not to damage the circuit board or spread solder flux around the board.
6. Install a new $3 \mathrm{~A}, 250 \mathrm{~V}$ fast-blow fuse, Keithley part number FU-107-1.

CAUTION Do not use a fuse with a higher current rating than specified or module damage may occur.
7. Solder the new fuse in place using organic (OA based) flux solder, again taking care not to damage the circuit board or spread solder flux around the board.
8. Carefully clean the repaired area of the circuit board with a foam tipped swab or brush dipped in pure water, then blow-dry the board with dry nitrogen gas. Allow the board to dry for several hours in a $50^{\circ} \mathrm{C}$ low-humidity environment before use.
9. Re-install the circuit board into the plastic housing, then close the top cover.

## Replacing Model 7751/7752/7753 plug-in module fuses

WARNING The information in this section is intended only for qualified service personnel. Do not perform these procedures unless you are qualified to do so.

Make sure that all plug-in module connections are de-energized and disconnected before replacing module fuses.

The four fuses located on the Model 7751/7752/7753 module are intend to protect the airbag being tested from detonation in the event of circuit failure on the Model 7751/7752/7753. If one of these fuses blows, it is likely that a circuit failure has occurred and the module must be repaired before being used to test airbags.

1. Turn off the power and disconnect external connections from the Model 7751/7752/7753.
2. Open the Model 7751/7752/7753 top cover.
3. Locate the fuses F1, F2, F3, and F4 (see Figure 18-4).
4. Remove the circuit board from the bottom plastic housing by removing the two bottom screws.
5. De-solder the blown fuse as required, taking care not to damage the circuit board or spread solder flux around the board.
6. Install a new 62 mA surface-mount fuse, Keithley part number FU-124-1.

WARNING Do not use a fuse with a higher current rating than specified or inadvertent detonation of the airbag being tested may occur.
7. Solder the new fuse in place using organic (OA based) flux solder, again taking care not to damage the circuit board or spread solder flux around the board.
8. Carefully clean the repaired area of the circuit board with a foam tipped swab or brush dipped in pure water, then blow-dry the board with dry nitrogen gas. Allow the board to dry for several hours in a $50^{\circ} \mathrm{C}$ low-humidity environment before use.
9. Re-install the circuit board into the plastic housing, then close the top cover.

Figure 18-4
Model 7751/7752/7753 fuses


## Replacing non-volatile RAM battery

The Model 2790 has a three-year lithium battery for non-volatile RAM. Use the procedure below to replace the battery, if required.

WARNING There is a danger of explosion if the battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

The following procedure is intended only for qualified service personnel. Do not perform this procedure unless you are qualified to do so.

Disconnect the line cord and all connecting wires from the Model 2790 before removing the top cover.

WARNING The precautions below must be followed to avoid personal injury:

- Wear safety glasses or goggles when working with lithium batteries.
- Do not short the battery terminals together.
- Keep lithium batteries away from all liquids.
- Do not attempt to recharge lithium batteries.
- Observe proper polarity when installing the battery.
- Do not incinerate or otherwise expose the battery to excessive heat ( $>60^{\circ} \mathrm{C}$ ).
- Bulk quantities of lithium batteries should be disposed of as hazardous waste.

Replace the battery as follows:

1. Remove the Model 2790 top cover
2. Locate battery BT100.
3. De-solder the battery from the top side of the circuit board.
4. Install a new battery, Keithley part number BA-51, taking care to observe proper polarity.
5. Solder the battery connection to the circuit board using organic (OA-based) flux solder.
6. After soldering, remove all flux using a foam-tipped swab or brush dipped in pure water. Blow-dry the board with dry nitrogen gas, then allow the board to dry for several hours in a $50^{\circ} \mathrm{C}$, low-humidity environment before use.
7. Re-install the top cover.

## Plug-in module relay closure count

The Model 2790 keeps an internal count of the number of times each module relay has been closed. This count will help you determine if and when any relays require replacement (see module contact life specifications). The count can be read or reset only via remote as outlined below.

## Closure count commands

Table 18-2 summarizes closure count commands.
Table 18-2
Closure count commands

Command	Description
$:$ ROUTe	Route subsystem.
$:$ CLOSe	Path to CLOSe commands.
:COUNt? (@clist)	Query count for channels in clist (channel list).
:INTerval < NRf>	Set count update interval in minutes (1 to 1440).
:INTerval?	Query count update interval.
:RCOunt (@clist)	Reset count for channels in clist.*

[^31]
## Reading relay closure count

To determine the closure count of specific channels, send this query via remote:

## :ROUTe:CLOSe:COUNt? (@clist)

Here, clist is the summary of channels. For example, to determine the closure count of channels 1 and 4 of a module in slot 1 , the following query would be sent:
:ROUT:CLOS:COUN? (@101,104)
The following query would determine the closure count of slot 1 module channels 1 through 10 :
:ROUT:CLOS:COUN? (@101:110)

## Resetting relay closure count

NOTE The Model 2790 must be in the manufacturing calibration mode to reset the closure count. To do so, press and hold the OPEN key while turning on the power, then send the :CAL:PROT:CODE "code" to unlock calibration (default code: KI002790). After resetting relay counts, send :CAL:PROT:LOCK to lock out calibration.

To reset the relay closure count of specific channels to 0 , send this command via remote:
:ROUTe:CLOSe:RCOunt (@clist)

Again clist is the summary of channels to be reset. For example, the following command resets channels 2 and 7 of a module in slot 1 to 0 :
:ROUT:CLOS:RCO (@102,107)
The following command resets the count of slot 1 module channels 1 through 10:
:ROUT:CLOS:RCO (@101:110)

## Setting count update interval

Relay closure counts are updated in temporary RAM every time a channel is closed, regardless of how it was closed: by a SCPI command, front panel control, or during a scan. These counts are permanently written to the EEPROM on the card only at a user-settable time interval (which has a factory default of 15 minutes) or whenever the counts are queried. Valid intervals (set in integer number of minutes) are between 1 and 1440 minutes ( 24 hrs ). Relay closures are counted only when a relay cycles from open to closed state. If you send multiple close commands to the same channel without sending an open command, only the first closure will be counted.

The lower the interval, the less chance there is of losing relay counts due to power failures. However, writing to the EEPROM more often may reduce scanning throughput. The higher the interval, the less scanning throughput is reduced, but more relay counts may be lost in the event of a power failure.

To set the count update interval, send this command:
:ROUTe:CLOSe:COUNt:INTerval <interval>
For example, to set the interval to 30 minutes, send this command:
:ROUT:CLOS:COUN:INT 30

## Front panel tests

There are two front panel tests: one to test the functionality of the front panel keys and one to test the display.

## KEY test

The KEY test allows you to check the functionality of each front panel key. Perform the following steps to run the KEY test:

1. Press SHIFT and then TEST to access the self-test options.
2. Use the up or down RANGE key to display "TEST: KEY".
3. Press ENTER to start the test. When a key is pressed, the label name for that key is displayed to indicate that it is functioning properly. When the key is released, the message "NO KEY PRESS" is displayed.
4. Pressing EXIT tests the EXIT key. However, the second consecutive press of EXIT aborts the test and returns the instrument to normal operation.

## DISP test

The display test allows you to verify that each segment and annunciator in the vacuum fluorescent display is working properly. Perform the following steps to run the display test:

1. Press SHIFT and then TEST to access the self-test options.
2. Use the up or down RANGE key to display "TEST: DISP".
3. Press ENTER to start the test. There are five parts to the display test. Each time ENTER is pressed, the next part of the test sequence is selected. The five parts of the test sequence are as follows:
a. All annunciators are displayed.
b. The segments of each digit are sequentially displayed.
c. The 12 digits (and annunciators) are sequentially displayed.
d. The annunciators located at either end of the display are sequentially displayed.
e. The LEDs are displayed.
4. When finished, abort the display test by pressing EXIT. The instrument returns to normal operation.

# Specifications 

(Models 2790, 7751, 7752, 7753, and 7702)

- Models 2790/7751/7752/7753 specifications — Provides the complete instrument specifications for the Model 2790 SourceMeter Switch System, including the specifications for the Models 7751, 7752, and 7753 modules.
- Ohms specification calculations (7751/7752/7753) — Provides equations to calculate ohms specifications for source levels not specified in the 7751/7752/7753 module specifications.
- Model 7702 specifications - Provides the complete specifications for the Model 7702 module.


## 2790 SourceMeter ${ }^{\circledR}$ Switch System Specifications

## 7751/7752/7753 SOURCE/SWITCH MODULE SPECIFICATIONS


(Dry Circuit Ohms 1mA max with 7751, 7752, or 7753 card) $1 \mathrm{~mA} \quad 10 \Omega \quad 20 \mathrm{mV} \quad 1.10 \%+40 \mathrm{~m} \Omega \quad(0.026 \%+3 \mathrm{~m} \Omega) /{ }^{\circ} \mathrm{C}$
(7751 Only)

Source   Voltage	Resistance   Range	Max.   Short Ckt.   Current	Accuracy   \%Rdg	Temperature   Coefficient   $\left(0-18 \mathbf{C ~ \& ~ 2 8 - 4 0 ~}^{\circ} \mathbf{C}\right)$
500 V	$10 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$0.8 \%$	$0.03 \% /{ }^{\circ} \mathrm{C}$
500 V	$100 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$1.1 \%$	$0.05 \% /{ }^{\circ} \mathrm{C}$
500 V	$1 \mathrm{G} \Omega$	$<1 \mathrm{~mA}$	$4.0 \%$	$0.12 \% /{ }^{\circ} \mathrm{C}$
50 V	$1 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$1.1 \%$	$0.04 \% /{ }^{\circ} \mathrm{C}$
50 V	$10 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$1.1 \%$	$0.06 \% /{ }^{\circ} \mathrm{C}$
50 V	$100 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$1.6 \%$	$0.13 \% /{ }^{\circ} \mathrm{C}$

(7753 Only)

Source   Voltage	Resistance   Range	Max.   Short Ckt.   Current	Accuracy   \%Rdg	Temperature   Coefficient   $\left(\mathbf{0 - 1 8}{ }^{\circ} \mathbf{C ~ \& ~ 2 8 - 4 0} \mathbf{C}\right)$
500 V	$1 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$0.8 \%$	$0.02 \% /{ }^{\circ} \mathrm{C}$
500 V	$10 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$0.9 \%$	$0.03 \% /{ }^{\circ} \mathrm{C}$
500 V	$100 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$1.3 \%$	$0.10 \% /{ }^{\circ} \mathrm{C}$
500 V	$1 \mathrm{G} \Omega$	$<1 \mathrm{~mA}$	$6.7 \%$	$0.27 \% /{ }^{\circ} \mathrm{C}$
50 V	$0.1 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$1.1 \%$	$0.03 \% /{ }^{\circ} \mathrm{C}$
50 V	$1 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$1.1 \%$	$0.04 \% /{ }^{\circ} \mathrm{C}$
50 V	$10 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$1.3 \%$	$0.11 \% /{ }^{\circ} \mathrm{C}$
50 V	$100 \mathrm{M} \Omega$	$<1 \mathrm{~mA}$	$4.5 \%$	$0.30 \% /{ }^{\circ} \mathrm{C}$

## Current Source Output

Output Level: Programmable 0 to 50 mA (Ch. 27). Programming Resolution: $10 \mu \mathrm{~A}$.
Output Voltage: $5.5 \mathrm{~V} \pm 10 \%$ compliance.
Accuracy: $0.06 \%+10 \mu \mathrm{~A}$ (2 yr Specification).
Settling Time: 1 mS to $0.1 \%$ of final value (typ).
Temperature Coefficient: $\quad\left(0-18^{\circ} \mathrm{C} \& 28-40^{\circ} \mathrm{C}\right)$
$(0.001 \%+0.25 \mu \mathrm{~A}) /{ }^{\circ} \mathrm{C}$
Dry Circuit Clamp (Ch. 24): $20 \mathrm{mV} \pm 10 \%$, Isource $\leq 1 \mathrm{~mA}$

## Voltage Source Output (7751/7753 Only)

Output Level: Programmable 50V to 500 V (CH. 28).
Programming Resolution: 100 mV .
Output Current: (7751)-50 $\mu \mathrm{A}$ maximum for rated accuracy, $<1 \mathrm{~mA}$ typical into short circuit. (7753) $-500 \mu \mathrm{~A}$ maximum for rated accuracy, $<1 \mathrm{~mA}$ typical into short circuit.

Accuracy: $0.5 \%+0.13 \mathrm{~V}(2 \mathrm{yr}$ Specification).
Settling Time: $\quad$ Rise Time: 50 V to 500 V step, $0.1 \%$ of final value, 250 ms max. Fall Time: 500 V to 50 V step, $0.1 \%$ of final value, 1000 ms max.
Temperature Coefficient: $\quad\left(0-18^{\circ} \mathrm{C} \& 28-40^{\circ} \mathrm{C}\right)$
$(0.001 \%+0.005 \mathrm{~V}) /{ }^{\circ} \mathrm{C}$
Safety Limit: Current limited maximum current of 1 mA .
Cable Discharge (Ch. 20): $100 \mathrm{k} \Omega$ Shunt
Max Capacitance: 1 nF

## Current Measure Input (7751/7753 Only)

Range: $7751(0-50 \mu \mathrm{~A}), 7753(0-500 \mu \mathrm{~A})$.
Accuracy: (7751) 0.5\% (of reading) + 6nA (2yr Specification) (7753) $0.5 \%$ (of reading) +60 nA ( 2 yr Specification). Temperature Coefficient: $\quad\left(0-18^{\circ} \mathrm{C} \& 28-40^{\circ} \mathrm{C}\right)(0.02 \%+0.5 \mathrm{nA}) /{ }^{\circ} \mathrm{C}$ Voltage Burden: $<1 \mathrm{mV}$.

## Switching Capabilities (Bank 1 - Bank 4)

4 Channels: $\quad 1$ Form A switch.
8 Channels: 4 4-pole or 8 2-pole signals into DMM or I/V converter.
Contact Check: 4-Wire contact check through internal DMM.
Relay Type: Latching electromechanical.
Actuation Time: $\quad<3 \mathrm{~ms}$.
Contact Life (typ): $\quad>10^{6}$ operations at maximum source level. $>10^{8}$ operations cold switching.
Contact Resistance: $<1 \mathrm{Ohm}$ at end of contact life.
Contact Potential: $\quad< \pm 2 \mu \mathrm{~V}$ typical per contact pair, $\pm 3 \mu \mathrm{~V}$ max.
Connector Type: Plugable screw terminal, \#22 AWG wire size.
Isolation Between any two Terminals ${ }^{1}:>1 \mathrm{G} \Omega,<100 \mathrm{pF}$.
Isolation Between Terminals and Earth ${ }^{1}:>1 \mathrm{G} \Omega,<200 \mathrm{pF}$.
Isolation Between Channel Groups ${ }^{1}:>500 \mathrm{G} \Omega,<100 \mathrm{pF}$.
External Common Mode Voltage: 42V between any terminal and chassis.
(Connect no external sources.)
7751, 7752, or 7753 Module Notes
${ }^{1}$ Isolation for channels 1-12, only one channel closed at a time, or all channels open.
${ }^{2}$ See User's manual for ohm specifications at sources other than those specified.
${ }^{3}$ All specifications valid for 1 NPLC ADC aperture setting.

## System Throughput

(Connect, source, measure, calculate)
0.01 NPLC, Filter Off, over GPIB Bus High Ohms (Source V): $13 \mathrm{Rdgs} / \mathrm{Sec}^{1}$
Low Ohms (Source I): 9 Rdgs/Sec
1 NPLC, Filter On, Over GPIB Bus
High Ohms (Source V): $11 \mathrm{Rdgs} / \mathrm{Sec}^{1}$
Low Ohms (Source I): 7 Rdgs/Sec
System Throughput Notes

1. Reset upon fixed Vsource level, no settling time.

## 2790 SourceMeter ${ }^{\circledR}$ Switch System Specifications

## 7751/7752/7753 SOURCE/SWITCH MODULE SPECIFICATIONS



## 2790 SourceMeter ${ }^{\circledR}$ Switch System Specifications

## 2790 MAINFRAME FUNCTION SPECIFICATION

## MAINFRAME FUNCTION ACCURACY SPECIFICATIONS ARE FOR 1 YEAR, $23^{\circ} \mathbf{C}^{ \pm} 5^{\circ} \mathrm{C}$

DC MEASUREMENT SPECIFICATIONS ${ }^{1}$

CONDITIONS: MED (1 PLC) ${ }^{2}$ or 10 PLC or MED (1 PLC) with Digital Filter of 10

ACCURACY: $\pm(\mathrm{ppm}$ of reading +ppm of range)
(ppm = parts per million) (e.g., $\mathbf{1 0 p p m}=\mathbf{0 . 0 0 1 \%}$ )

Function	Range		Resolution	Test Current ( $\pm 5 \%$ ) or Burden Voltage	Input Resistance or Open Ckt. Voltage ${ }^{3}$	$\begin{aligned} & 24 \text { Hour }^{4} \\ & 23^{\circ} \mathrm{C} \pm 1^{\circ} \end{aligned}$	$\begin{gathered} 90 \text { Day } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \end{gathered}$	Temperature Coefficient $0^{\circ}-18^{\circ} \mathrm{C} \& 28^{\circ}-40^{\circ} \mathrm{C}$
Voltage	100.0000	mV	$0.1 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$15+30$	$25+70$	$30+70$	$(1+5) /{ }^{\circ} \mathrm{C}$
	1.000000	V	$1.0 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$15+6$	$25+7$	$30+7$	$(1+1) /{ }^{\circ} \mathrm{C}$
	10.00000	V	$10 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$10+4$	$20+5$	$30+5$	$(1+1) /{ }^{\circ} \mathrm{C}$
	100.0000	V	$100 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$15+6$	$45+9$	$55+9$	$(5+1) /{ }^{\circ} \mathrm{C}$
	1000.000	$\mathrm{V}^{5}$	1 mV		$10 \mathrm{M} \Omega \pm 1 \%$	$20+6$	$35+9$	$50+9$	$(5+1) /{ }^{\circ} \mathrm{C}$
Resistance ${ }^{6,8}$	100.0000	$\Omega$	$100 \mu \Omega$	1 mA	6.6 V	$20+20$	$80+20$	$100+20$	$(8+1) /{ }^{\circ} \mathrm{C}$
	1.000000	$k \Omega$	$1 \mathrm{~m} \Omega$	1 mA	6.6 V	$20+6$	$80+6$	$100+6$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.00000	$\mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$	6.6 V	$20+6$	$80+6$	$100+6$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.0000	$\mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	12.8 V	$20+6$	$80+10$	$100+10$	$(8+1) /{ }^{\circ} \mathrm{C}$
	1.000000	$\mathrm{M} \Omega$	1.0 ת	$10 \mu \mathrm{~A}$	12.8 V	$20+6$	$80+10$	$100+10$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.00000	$\mathrm{M} \Omega^{7}$	$10 \Omega$	Note 7	7.0 V	$150+6$	$200+10$	$400+10$	$(70+1) /{ }^{\circ} \mathrm{C}$
	100.0000	$\mathrm{M} \Omega^{7}$	$100 \Omega$	Note 7	7.0 V	$800+30$	$3000+30$	$3000+30$	$(385+1) /{ }^{\circ} \mathrm{C}$
Continuity (2W)	) 1.000	$\mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1 mA	6.6 V	$40+100$	$100+100$	$100+100$	$(8+1) /{ }^{\circ} \mathrm{C}$
Current	20.00000	mA	10 nA	$<0.2 \mathrm{~V}$		$60+30$	$300+80$	$500+80$	$(50+5) /{ }^{\circ} \mathrm{C}$
	100.0000	mA	100 nA	$<0.05 \mathrm{~V}$		$100+300$	$300+800$	$500+800$	$(50+50) /{ }^{\circ} \mathrm{C}$
	1.000000	A	$1.0 \mu \mathrm{~A}$	$<0.3 \mathrm{~V}^{9}$		$200+30$	$500+80$	$800+80$	$(50+5) /{ }^{\circ} \mathrm{C}$
	3.000000	A	$10 \mu \mathrm{~A}$	$<1.0 \quad \mathrm{~V}^{9}$		$1000+15$	$1200+40$	$1200+40$	$(50+5) /{ }^{\circ} \mathrm{C}$

Channel (Ratio) ${ }^{10} \quad$ Ratio Accuracy = Accuracy of selected Channel Range + Accuracy of Paired Channel Range
Channel (Average) ${ }^{10} \quad$ Average Accuracy = Accuracy of selected Channel Range + Accuracy of Paired Channel Range

## Temperature

(Displayed in ${ }^{\circ} \mathbf{C}$, ${ }^{\circ} \mathbf{F}$, or $\mathbf{K}$. Exclusive of probe errors.)

Range		Resolution	Accuracy   1 Year $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$		Temperature Coefficient $0-18^{\circ} \mathrm{C}$ \& $28^{\circ}-40^{\circ} \mathrm{C}$	
4-Wire RTD:   (100ת platinum [PT100], D100, F100, PT385, PT3916, or user type. Offset compensation On.)						
$-200^{\circ} \mathrm{C}$ to $630^{\circ} \mathrm{C}$		$0.01{ }^{\circ} \mathrm{C}$	$0.06{ }^{\circ} \mathrm{C}$		$0.003{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
Thermistor: ( $2.2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega)^{18}$						
$-80^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		$0.01{ }^{\circ} \mathrm{C}$	$0.08^{\circ} \mathrm{C}$		$0.002{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
DC Speed vs. Noise Rejection						
Rate	Filter	Readings/s ${ }^{11}$	Digits	RMS Noise 10V Range	NMRR	CMRR ${ }^{13}$
10	50	0.01 (0.08)	6.5	$<1.2 \mu \mathrm{~V}$	$110 \mathrm{~dB}^{12}$	120 dB
1	Off	15 (12)	6.5	$<4 \mu \mathrm{~V}$	$90 \mathrm{~dB}^{12}$	120 dB
0.1	Off	500 (400)	5.5	$<22 \mu \mathrm{~V}$	-	80 dB
0.01	Off	2000 (1800)	4.5	$<150 \mu \mathrm{~V}$	-	80 dB

## DC Operating Characteristics ${ }^{15}$

$60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation

Function	Digits	Readings/s		PLCs
DCV, DCI,	$6.5^{11,15}$	5	$(4)$	10
Ohms $(<\mathbf{1 0 M})$,	$6.5^{15}$	30	$(24)$	1
Thermistor	$6.5^{11,15}$	50	$(40)$	1
	$5.5^{11,15}$	100	$(80)$	0.1
	$5.5^{15,16}$	250	$(200)$	0.1
	$5.5^{16}$	480	$(400)$	0.1
	$4.5^{16}$	$2000(1800)$	0.01	
4W Ohms (<10M)	$6.5^{15}$	1.4	$(1.1)$	10
	$6.5^{15}$	15	$(12)$	1
	$5.5^{16}$	33	$(25)$	0.1
RTD	$6.5^{15}$	0.9	$(0.7)$	10
	$6.5^{15}$	8	$(6.4)$	1
	$5.5^{15,16}$	18	$(14.4)$	0.1
Channel (Ratio),	$6.5^{15}$	2.5	$(2)$	10
Channel (AVG)	$6.5^{15}$	15	$(12)$	1
	$5.5^{16}$	25	$(20)$	0.1

## 2790 SourceMeter ${ }^{\circledR}$ Switch System Specifications

## MAINFRAME FUNCTION SPECIFICATION

DC System Speeds ${ }^{14,17}$
RANGE CHANGES ${ }^{15}$ : 50/s (42/s).
FUNCTION CHANGES ${ }^{15}$ : 50/s (42/s).
AUTORANGE TIME ${ }^{15}:<30 \mathrm{~ms}$.
ASCII READINGS TO RS-232 (19.2k BAUD): 55/s.
MAX. INTERNAL TRIGGER RATE: 2000/s.
MAX. EXTERNAL TRIGGER RATE: 375/s.

## DC MEASUREMENT CHARACTERISTICS

## DC Volts

A-D LINEARITY: 2.0 ppm of reading +1.0 ppm of range.
INPUT IMPEDANCE:
$100 \mathrm{mV}-10 \mathrm{~V}$ Ranges: Selectable $>10 \mathrm{G} \Omega / /$ with $<400 \mathrm{pF}$ or $10 \mathrm{M} \Omega \pm 1 \%$.
$100 \mathrm{~V}, 1000 \mathrm{~V}$ Ranges: $10 \mathrm{M} \Omega \pm 1 \%$.
INPUT BIAS CURRENT: $<100 \mathrm{pA}$ at $23^{\circ} \mathrm{C}$.
COMMON MODE CURRENT: $<500 \mathrm{nAp}-\mathrm{p}$ at 50 Hz or 60 Hz .
INPUT PROTECTION: Front, 1000V, Rear, 300V, 7702 card only.

## Resistance

MAX 4W LEAD RESISTANCE: $10 \%$ of range per lead for $100 \Omega$ and $1 \mathrm{k} \Omega$ ranges; $1 \mathrm{k} \Omega$ per lead for all other ranges.
OFFSET COMPENSATION: Selectable on $4 \mathrm{~W} \Omega, 100 \Omega, 1 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ ranges.
CONTINUITY THRESHOLD: Adjustable 1 to $1000 \Omega$.
INPUT PROTECTION: Front, 1000V Source Inputs, 350V Sense Inputs, Rear, $300 \mathrm{~V}, 7702$ card only.

## DC Current

Shunt Resistors: $100 \mathrm{~mA}-3 \mathrm{~A}, 0.1 \Omega .20 \mathrm{~mA}, 5 \Omega$.
Input Protection: $3 \mathrm{~A}, 250 \mathrm{~V}$ fuse.

## DC Notes

${ }^{1} 20 \%$ overrange except on 1000 V and 3 A .
${ }^{2}$ Add the following to "ppm of range" uncertainty; $100 \mathrm{mV} 15 \mathrm{ppm}, 1 \mathrm{~V}$ and $100 \mathrm{~V} 2 \mathrm{ppm}, 100 \Omega 30 \mathrm{ppm},<1 \mathrm{M} \Omega 2 \mathrm{ppm}, 10 \mathrm{~mA}$ and 1 A 10 ppm , 100 mA 40 ppm .
${ }^{3} \pm 2 \%$ (measured with $10 \mathrm{M} \Omega$ input resistance DMM, $>10 \mathrm{G} \Omega$ DMM on $10 \mathrm{M} \Omega$ and $100 \mathrm{M} \Omega$ ranges).
${ }^{4}$ Relative to calibration accuracy.
${ }^{5}$ For signal levels $>500 \mathrm{~V}$, add $0.02 \mathrm{ppm} / \mathrm{V}$ uncertainty for portion exceeding 500 V .
${ }^{6}$ Specifications are for 4 -wire $\Omega, 100 \Omega$ with offset compensation on. With offset compensation on, OPEN CKT. VOLTAGE is 12.8V. For 2wire $\Omega$ add $1 \Omega$ additional uncertainty.
${ }^{7}$ Must have $10 \%$ matching of lead resistance in Input HI and LO. Test current $+0.7 \mu \mathrm{~A} \| 10 \mathrm{M} \Omega$
${ }^{8}$ Add the following to "ppm of reading" uncertainty when using plug in modules:

	$10 \mathrm{k} \Omega 100 \mathrm{k} \Omega 1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$
7702, 7751, 7752		220 ppm	2200 ppm

${ }^{9}$ Add 1 V when used with plug-in modules.
${ }^{10}$ For RATIO, DCV only. For AVERAGE, DCV only. Available with plug-in modules only.
${ }_{11}^{11}$ Auto zero off.
${ }^{12}$ For LSYNC On, line frequency $\pm 0.1 \%$. For LSYNC Off, use 60 dB for $\geq 1$ PLC.
${ }^{13}$ For $1 \mathrm{k} \Omega$ unbalance in LO lead.
${ }^{14}$ Speeds are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions (*RST). Autorange off, Display off, Limits off, Trigger delay $=0$.
${ }^{15}$ Speeds include measurements and binary data transfer out the GPIB.
${ }^{16}$ Sample count $=1024$, auto zero off.
${ }^{17}$ Auto zero off, NPLC $=0.01$.
${ }^{18}$ For lead resistance $>0 \Omega$, add the following uncertainty $/ \Omega$ for measurement temperatures of:

		$\mathbf{7 0}^{\circ}-\mathbf{1 0 0}^{\circ} \mathrm{C}$	$\mathbf{1 0 0}^{\circ}-\mathbf{1 5 0}^{\circ} \mathrm{C}$
$\mathbf{2 . 2} \mathbf{~ k} \boldsymbol{\Omega}$	$(44004)$	$0.22^{\circ} \mathrm{C}$	$1.11^{\circ} \mathrm{C}$
$\mathbf{5 . 0} \mathbf{~ k} \boldsymbol{\mathrm { C }}$	$(44007)$	$0.10^{\circ} \mathrm{C}$	$0.46^{\circ} \mathrm{C}$
$\mathbf{1 0} \mathbf{~ k} \boldsymbol{\Omega}$	$(44006)$	$0.04^{\circ} \mathrm{C}$	$0.19^{\circ} \mathrm{C}$

## MAINFRAME FUNCTION SPECIFICATION

## AC MEASUREMENT SPECIFICATIONS ${ }^{1}$

Function	Range	Resolution	All Ranges   Calibration Cycle	All Ranges   Accuracy: $\pm\left(\%\right.$ of reading $+\%$ of range), $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$				
				$\begin{gathered} 3 \mathrm{~Hz}-1 \\ 10 \mathrm{~Hz}^{13} \end{gathered}$	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 20 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 20 \mathrm{kHz}- \\ 50 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & \hline 50 \mathrm{kHz}- \\ & 100 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \hline 100 \mathrm{kHz}- \\ & \mathbf{3 0 0} \mathrm{kHz} \end{aligned}$
Voltage 2	100.0000 mV	$0.1 \mu \mathrm{~V}$	90 Days	$0.35+0.03$	$0.05+0.03$	$0.11+0.05$	$0.6+0.08$	$4.0+0.5$
	1.000000 V	$1.0 \mu \mathrm{~V}$						
	10.00000 V	$10 \mu \mathrm{~V}$	1 Year	$0.35+0.03$	$0.06+0.03$	$0.12+0.05$	$0.6+0.08$	$4.0+0.5$
	100.0000 V	$100 \mu \mathrm{~V}$						
	750.000 V	$1.0 \mu \mathrm{~V}$						
			(Temp. Coeff.) $/{ }^{( } \mathbf{C}^{3}$	$0.035+0.003$	$0.005+0.003$	$0.006+0.005$	$0.01+0.006$	$0.03+0.01$
				$3 \mathrm{~Hz}-10 \mathrm{~Hz}$	$10 \mathrm{~Hz}-\mathbf{3} \mathbf{~ k H z}$	$\mathbf{3} \mathbf{~ k H z}-\mathbf{5} \mathbf{~ k H z}$		
$\overline{\text { Current }}{ }^{\text {2 }}$	1.000000 A	$1.0 \mu \mathrm{~A}$	90 Day/1 Year	$0.30+0.04$	$0.10+0.04$	$0.14+0.04$		
	$3.00000^{14} \mathrm{~A}$	$10 \mu \mathrm{~A}$		$0.35+0.06$	$0.15+0.06$	$0.18+0.06$		
			(Temp. Coeff.) $/{ }^{\circ} \mathbf{C}^{3}$	$0.035+0.006$	$0.015+0.006$	$0.015+0.006$		
				( $3 \mathrm{~Hz}-500 \mathrm{kHz}$ ) ( $\mathbf{3 3 3} \mathbf{~ m s}-2 \mu \mathrm{~s}$ )				
$\begin{aligned} & \text { Frequency }{ }^{4} \\ & \text { and Period } \end{aligned}$	100 mV	0.333 ppm	90 Day/1 Year	$\begin{aligned} & 80 \mathrm{ppm}+0.333 \mathrm{ppm} \text { (SLOW, 1s gate) } \\ & 80 \mathrm{ppm}+3.33 \mathrm{ppm} \text { (MED, 100 ms gate) } \\ & 80 \mathrm{ppm}+33.3 \mathrm{ppm} \text { (FAST, 10ms gate) } \end{aligned}$				
		3.33 ppm						
	750 V	33.3 ppm						

Additional Uncertainty $\pm$ (\% of reading)

Low Frequency Uncertainty	MED	FAST
$20 \mathrm{~Hz}-30 \mathrm{~Hz}$	0.3	-
$30 \mathrm{~Hz}-50 \mathrm{~Hz}$	0	-
$50 \mathrm{~Hz}-100 \mathrm{~Hz}$	0	1.0
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$	0	0.18
$200 \mathrm{~Hz}-300 \mathrm{~Hz}$	0	0.10
$>300 \mathrm{~Hz}$	0	0
CREST FACTOR		
Additional Uncertainty:	$\mathbf{1 - 2}$	$\mathbf{2 - 3}$

## AC MEASUREMENT CHARACTERISTICS

## AC Volts

MEASUREMENT METHOD: AC-coupled, True RMS.
INPUT IMPEDANCE: $1 \mathrm{M} \Omega \pm 2 \% / / \mathrm{by}<100 \mathrm{pF}$.
INPUT PROTECTION: 1000 Vp or $400 \mathrm{VDC}, 300 \mathrm{Vrms}$ with 7702 module.

## AC Current

MEASUREMENT METHOD: AC-coupled, True RMS.
SHUNT RESISTANCE: $0.1 \Omega$.
BURDEN VOLTAGE: $1 \mathrm{~A}<0.3 \mathrm{Vrms}, 3 \mathrm{~A}<1 \mathrm{Vrms}$. Add 1 Vrms when used with 7702 modules.
INPUT PROTECTION: 3A, 250V fuse.

## Frequency and Period

MEASUREMENT METHOD: Reciprocal Counting technique.
GATE TIME: SLOW 1s, MED 100 ms , and FAST 10 ms .

## AC General

AC CMRR ${ }^{6}$ : 70dB.
MAXIMUM CREST FACTOR: 5 at full-scale.
VOLT HERTZ PRODUCT: $<=8 \times 10^{7}$.
AC OPERATING CHARACTERISTICS ${ }^{7}$
$60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation

Function	Digits	Readings/s	Rate	Bandwidth
ACV, ACI	$6.5^{8}$	$2 \mathrm{~s} /$ Reading	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
	$6.5^{8}$	$1.4(1.1)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	$6.5^{9}$	$4.8(4)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	$6.5^{9}$	$35(28)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
Frequency,	6.5	$1(1)$	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
Period	5.5	$9(9)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	4.5	$35(35)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
	$4.5^{10}$	$65(65)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$

## 2790 SourceMeter ${ }^{\circledR}$ Switch System Specifications

## MAINFRAME FUNCTION SPECIFICATION

AC System Speeds ${ }^{7,11}$
RANGE CHANGES ${ }^{12}$ : 4/s (3/s).
FUNCTION CHANGES ${ }^{12}: 4 / \mathrm{s}$ (3/s).
AUTORANGE TIME: < 3s.
ASCII READINGS TO RS-232 (19.2k baud): 50/s.
MAX. INTERNAL TRIGGER RATE: 300/s.
MAX. EXTERNAL TRIGGER RATE: 250/s.

## AC Notes

${ }^{1} 20 \%$ overrange except on 750 V and 3 A .
${ }^{2}$ Specifications are for SLOW mode and sine wave inputs $>5 \%$ of range. SLOW and MED are multi-sample A/D conversions. FAST is DETector:BANDwidth 300 with nPLC $=1.0$.
${ }^{3}$ Applies to $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-40^{\circ} \mathrm{C}$.
${ }^{4}$ Specifications are for square wave inputs only. Input signal must be $>10 \%$ of ACV range. If input is $<20 \mathrm{mV}$ on the 100 mV range then the frequency must be $>10 \mathrm{~Hz}$.
${ }^{5}$ Applies to non-sine waves $>5 \mathrm{~Hz}$ and $<500 \mathrm{~Hz}$. (Guaranteed by design for Crest Factors >4.3)
${ }^{6}$ For $1 \mathrm{k} \Omega$ unbalance in LO lead.
${ }^{7}$ Speeds are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions (*RST). Autorange off, Display off, Limits off, Trigger delay $=0$. Includes measurement and binary data transfer out GPIB.
${ }^{8} 0.01 \%$ of step settling error. Trigger delay $=400 \mathrm{~ms}$.
${ }^{9}$ Trigger delay $=0$.
${ }^{10}$ Sample count $=1024$.
${ }^{11}$ DETector:BANDwidth 300 with nPLC $=0.01$.
${ }^{12}$ Maximum useful limit with trigger delay $=175 \mathrm{~ms}$.
${ }^{13}$ Typical uncertainties. Typical represents two sigma or $95 \%$ of manufactured units measure $<0.35 \%$ of reading and three sigma or $99.7 \%<1.06 \%$ of reading.
${ }^{14}$ For signal levels $>2.2 \mathrm{~A}$, add additional $0.4 \%$ to "of reading" uncertainty.

## Internal Scanner Speeds:

Into and Out of Memory to GPIB ${ }^{1}$
7702 Scanning DCV: 60/s

## Internal Scanner Speed Notes:

${ }^{1}$ Speeds are 60 Hz or 50 Hz operation using factory default conditions (*RST). NPLC $=0.01$. Auto Zero off, Auto Range off, and Display off. Sample count $=1024$. Includes measurement and binary data transfer out GPIB.

## GENERAL SPECIFICATIONS

POWER SUPPLY: $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V}$.
LINE FREQUENCY: 50 Hz to 60 Hz and 400 Hz , automatically sensed at power-up.
POWER CONSUMPTION: 28VA.
OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to $80 \%$ R.H. at $35^{\circ} \mathrm{C}$. Altitude up to 2000 meters.
STORAGE ENVIRONMENT: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
BATTERY: Lithium battery-backed memory, 3 years @ $23^{\circ} \mathrm{C}$.
WARRANTY: 1 year.
EMC: Conforms to European Union Directive 89/336/EEC EN61326-1.
SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I.
VIBRATION: MIL-PRF-28800F Class 3, Random.
WARM-UP: 2 hours to rated accuracy. DIMENSIONS:

Rack Mounting: 89 mm high $\times 213 \mathrm{~mm}$ wide $\times 370 \mathrm{~mm}$ deep ( $3.5 \mathrm{in} . \times 8.375 \mathrm{in} . \times 14.563 \mathrm{in}$.).
Bench Configuration (with handle and feet): 104 mm high $\times 238 \mathrm{~mm}$ wide $\times 370 \mathrm{~mm}$ deep ( 4.125 in . $\times$ $9.375 \mathrm{in} . \times 14.563 \mathrm{in}$.).
SHIPPING WEIGHT: 6.5 kg ( 14 lbs ).
DIGITAL I/O: 2 inputs, 1 for triggering and 1 for hardware interlock. 5 outputs, 4 for Reading Limits and 1 for Master Limit. Outputs are TTL compatible or can sink 250 mA , diode clamped to 33 V .
EARTH ISOLATION: $500 \mathrm{Vpeak},>10 \mathrm{G} \Omega$ and $<150 \mathrm{pF}$ any terminal to chassis.
TRIGGERING AND MEMORY:
Window Filter Sensitivity: $0.01 \%, 0.1 \%, 1 \%, 10 \%$, or Full-scale of range (none).
Reading Hold Sensitivity: $0.01 \%, 0.1 \%, 1 \%$, or $10 \%$ of reading.
Trigger Delay: 0 to 99 hrs ( 1 ms step size).
External Trigger Delay: <2ms.
External Trigger Jitter: <1ms.
Memory Size: 55,000 readings.
MATH FUNCTIONS: Rel, Min/Max/Average/Std
Dev/Peak-to-Peak (of stored reading), Limit Test, \%, mX
+b and $\mathrm{m}(1 / \mathrm{X})+\mathrm{b}$ with user defined units displayed.

## REMOTE INTERFACE:

GPIB (IEEE-488.2) and RS-232C.
SCPI (Standard Commands for Programmable Instruments)
ACCESSORIES SUPPLIED: User Manual and Reference Manual, Screw Driver.
MODULES SUPPORTED: Models 7751, 7752, and 7702.

## Ohms specification calculations (7751/7752/7753)

Ohms specifications for the 7751/7752/7753 module provide the ohms accuracy and temperature coefficient data for specific I-source and V-source output values. The following formulas can be used to determine the ohms specification for any valid I-source or V-source output setting not published in the specification sheet.

Ohms accuracy and temperature coefficient are specified as percent of reading plus an ohms offset.

## 7751/7752/7753 I-source

Low ohms specifications using the I-source of the 7751/7752/7753 are provided for the following current output settings: $50 \mathrm{~mA}, 20 \mathrm{~mA}, 10 \mathrm{~mA}$, and 1 mA (dry circuit ohms). Use the following formulas for other I-source settings:

NOTE The following formulas are only valid when using 1VDC range of the Model 2790 DMM. When using the SIxOhms math calculation, the $1 V$ range is selected automatically.

## Ohms accuracy

```
% of reading = (0.07 + 1/ISOURCE) %
Ohms offset = (0.03/ISOURCE) \Omega
```

where: $\mathrm{I}_{\text {SOURCE }}$ is the current output setting in mA
Example - Determine ohms accuracy for an I-source setting of 30 mA :

$$
\begin{aligned}
\% \text { of reading } & =(0.07+1 / 30) \% \\
& =(0.07+0.03) \% \\
& =0.10 \% \\
\text { Ohms offset } & =(0.03 / 30) \Omega \\
& =1 \mathrm{~m} \Omega
\end{aligned}
$$

Ohms accuracy $(30 \mathrm{~mA})=0.10 \%+1 \mathrm{~m} \Omega$

## Ohms temperature coefficient

$T C \%$ of reading $=(0.001+0.025 / I S O U R C E) \% 1^{\circ} \mathrm{C}$
TC ohms offset $=(0.001 / I S O U R C E) \Omega /{ }^{\circ} \mathrm{C}$
where: $\mathrm{I}_{\text {SOURCE }}$ is the current output setting in mA
Example - Determine temperature coefficient for an I-source setting of 30 mA :
$\%$ of reading $\quad=(0.001+0.025 / 30) \% /{ }^{\circ} \mathrm{C}$

$$
=(0.001+0.00083) \%
$$

$$
=0.00183 \% /{ }^{\circ} \mathrm{C}
$$

Ohms offset $\quad=(0.001 / 30) \Omega /{ }^{\circ} \mathrm{C}$ $=0.033 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$

Ohms temperature coefficient $(30 \mathrm{~mA})=(0.00183 \%+0.033 \mathrm{~m} \Omega) /{ }^{\circ} \mathrm{C}$

## 7751/7753 V-source

## Ohms accuracy

High ohms specifications using the V-source of the 7751/7753 are provided in the specifications for the 500 V and 50 V settings. Use the graphs in Figure A-1 (7751) and Figure A-2 (7753) for other V-source settings.

Figure A-1
Model 7751 measurement uncertainty for various voltage source settings


Figure A-2
Model 7753 measurement uncertainty for various voltage source settings


## Ohms temperature coefficients

## For measurements $1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$

$T C \%$ of reading $=\left(0.02+1 / V_{\text {SOURCE }}\right) \% /{ }^{\circ} \mathrm{C}$
TC ohms offset $=200 \Omega /{ }^{\circ} \mathrm{C}$
where: $\mathrm{V}_{\text {SOURCE }}$ is the voltage output setting in volts
Example - Determine temperature coefficient for a V-source setting of 100V:
$\%$ of reading $\quad=(0.02+1 / 100) \% /{ }^{\circ} \mathrm{C}$
$=(0.02+0.01) \% /{ }^{\circ} \mathrm{C}$
$=0.03 \% /{ }^{\circ} \mathrm{C}$
Ohms temperature coefficient $(100 \mathrm{~V})=(0.03 \%+200 \Omega) /{ }^{\circ} \mathrm{C}$

## For measurements $10 \mathrm{M} \Omega$ to $100 \mathrm{M} \Omega$

$T C \%$ of reading $=\left(0.02+6 / V_{\text {SOURCE }}\right) \% /{ }^{\circ} \mathrm{C}$
TC ohms offset $=200 \Omega /{ }^{\circ} \mathrm{C}$
where: $\mathrm{V}_{\text {SOURCE }}$ is the voltage output setting in volts
Example - Determine temperature coefficient for a V-source setting of 100V:

$$
\begin{aligned}
\% \text { of reading } & =(0.02+6 / 100) \% /{ }^{\circ} \mathrm{C} \\
& =(0.02+0.06) \% /{ }^{\circ} \mathrm{C} \\
& =0.08 \% /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Ohms temperature coefficient $(100 \mathrm{~V})=(0.08 \%+200 \Omega) /{ }^{\circ} \mathrm{C}$

## For measurements $100 \mathrm{M} \Omega$ to $1 \mathrm{G} \Omega$

TC \% of reading $=\left(0.02+51 / V_{\text {SOURCE }}\right) \% /{ }^{\circ} \mathrm{C}$
TC ohms offset $=200 \Omega /{ }^{\circ} \mathrm{C}$
where: $\mathrm{V}_{\text {SOURCE }}$ is the voltage output setting in volts
Example - Determine temperature coefficient for a V-source setting of 100V:
$\%$ of reading $\quad=(0.02+51 / 100) \% /{ }^{\circ} \mathrm{C}$ $=(0.02+0.51) \% /{ }^{\circ} \mathrm{C}$
$=0.53 \% /{ }^{\circ} \mathrm{C}$
Ohms temperature coefficient $(100 \mathrm{~V})=(0.53 \%+200 \Omega) /{ }^{\circ} \mathrm{C}$

## Status and Error Messages

Table B-1
Status and error messages

Number	Description	Event
-440	Query unterminated after indefinite response	EE
-430	Query deadlocked	EE
-420	Query unterminated	EE
-410	Query interrupted	EE
-363	Input buffer overrun	SYS
-350	Queue overflow	SYS
-330	Self-test failed	EE
-315	Configuration memory lost	EE
-314	Save/recall memory lost	EE
-285	Program syntax error	EE
-284	Program currently running	EE
-282	Illegal program name	EE
-281	Cannot create program	EE
-260	Expression error	EE
-241	Hardware missing	EE
-230	Data corrupt or stale	EE
-225	Out of memory	EE
-224	Illegal parameter value	EE
-223	Too much data	EE
-222	Parameter data out of range	EE
-221	Settings conflict	EE
-220	Parameter error	EE
-215	Arm deadlock	Trigger deadlock
-214	Init ignored	EE
-213	Arm ignored	EE
-212	Trigger ignored	EE
-211	Trigger error	EE
-210	Settings lost due to rtl	EE
-202	Invalid while in local	EE
-201	Execution error	EE
-200	Expression data not allowed	
-178	Invalid expression	EE
-171	Expression error	EE
-168	Block data not allowed	EE
-161	Invalid block data	Block data error
-160	String data not allowed	EE
-158	-154	String too long
-151	Invalid string data	String data error
-150		

Table B-1 (cont.)
Status and error messages

Number	Description	Event
-148	Character data not allowed	EE
-144	Character data too long	EE
-141	Invalid character data	EE
-140	Character data error	EE
-128	Numeric data not allowed	EE
-124	Too many digits	EE
-123	Exponent too large	EE
-121	Invalid character in number	EE
-120	Numeric data error	EE
-114	Header suffix out of range	EE
-113	Undefined header	EE
-112	Program mnemonic too long	EE
-111	Header separator error	EE
-110	Command header error	EE
-109	Missing parameter	EE
-108	Parameter not allowed	EE
-105	GET not allowed	EE
-104	Data type error	EE
-103	Invalid separator	EE
-102	Syntax error	EE
-101	Invalid character	EE
-100	Command error	EE
+000	No error	SE

Table B-1 (cont.)
Status and error messages

Number	Description	Event
+101	Operation complete	SE
+121	Device calibrating	SE
+122	Device settling	SE
+123	Device ranging	SE
+124	Device sweeping	SE
+125	Device measuring	SE
+126	Device calculating	SE
+161	Program running	SE
+171	Waiting in trigger layer	SE
+174	Re-entering the idle layer	SE
+180	Filter settled	SE
+301	Reading overflow	SE
+302	Low limit 1 event	SE
+303	High limit 1 event	SE
+304	Low limit 2 event	SE
+305	High limit 2 event	SE
+306	Reading available	
+307	Buffer user-selectable event	SE
+308	Buffer available	SE
+309	Buffer half full	SE
+310	Buffer full	
+311	Buffer overflow	SE
+312	Buffer one quarter full	
+313	Buffer three quarters full	
+314	Master limit event	SE

Table B-1 (cont.)
Status and error messages

Number	Description	Event
	Calibration messages:	
+400	10vdc zero error	EE
+401	100 vdc zero error	EE
+402	10 vdc full scale error	EE
+403	-10vdc full scale error	EE
+404	100 vdc full scale error	EE
+405	-100vdc full scale error	EE
+406	1k 2-w zero error	EE
+407	10k 2-w zero error	EE
+408	100k 2-w zero error	EE
+409	10M 2-w zero error	EE
+410	10M 2-w full scale error	EE
+411	10M 2-w open error	EE
+412	1k 4-w zero error	EE
+413	10k 4-w zero error	EE
+414	100k 4-w zero error	EE
+415	10M 4-w sense lo zero error	EE
+416	1k 4-w full scale error	EE
+417	10k 4-w full scale error	EE
+418	100k 4-w full scale error	EE
+419	1M 4-w full scale error	EE
+420	10M 4-w full scale error	EE
+421	10 m adc zero error	EE
+422	100 m adc zero error	EE
+423	10 m adc full scale error	EE
+424	100 m adc full scale error	EE
+425	1 adc full scale error	EE
+438	Date of calibration not set	EE
+439	Next date of calibration not set	EE
+450	100 m vac dac error	EE
+451	1 vac dac error	EE
+452	10 vac dac error	EE
+453	100 vac dac error	EE
+454	100 m vac zero error	EE
+455	100 m vac full scale error	EE

Table B-1 (cont.)
Status and error messages

Number	Description	Event
+456	1 vac zero error	EE
+457	1 vac full scale error	EE
+458	1 vac noise error	EE
+459	10 vac zero error	EE
+460	10 vac full scale error	EE
+461	10 vac noise error	EE
+462	100 vac zero error	EE
+463	100 vac full scale error	EE
+464	750 vac zero error	EE
+465	750 vac full scale error	EE
+466	750 vac noise error	EE
+467	Post filter offset error	EE
+468	1 aac zero error	EE
+469	1 aac full scale error	EE
+470	3 aac zero error	EE
+471	3 aac full scale error	EE
+472	1 V 10 Hz amplitude error	EE
+473	Frequency gain error	EE
+474	1 K Ohm loff Ocomp FS error	EE
+475	10K Ohm loff Ocomp FS error	EE
+476	Temperature Cold Cal error	EE
+477	Analog output zero error	EE
+478	Analog output positive gain error	EE
+479	Analog output negative gain error	EE
+499	1 V 10 Hz frequency error	EE
+500	Calibration data invalid	EE
+510	Reading buffer data lost	EE
+511	GPIB address lost	EE
+512	Power-on state lost	EE
+513	AC calibration data lost	EE
+514	DC calibration data lost	EE
+515	Calibration dates lost	EE
+516	Battery backed RAM error	EE
+517	Cannot resume scan	EE
+518	Card calibration data lost	EE
+519	Card calibration dates lost	EE
+520	Saved setup scancard mismatch	EE
+521	Card relay counts lost	EE

Table B-1 (cont.)
Status and error messages

Number	Description	Event
+522	GPIB communication language lost	EE
+523	Card hardware error	EE
+524	Unsupported card detected	EE
+525	Scancard memory pattern mismatch	EE
+610	Questionable calibration	SE
+611	Questionable temperature	SE
+700	Invalid function in chanlist	EE
+701	Memory pattern full	EE
+702	No measurement channel in scanlist	EE
+800	RS-232 Framing error detected	EE
+802	RS-232 Overrun detected	EE
+803	RS-232 Break detected	EE
+805	Invalid system communication	EE
+808	ASCII only with RS-232	EE
+860	Slot 1 Interlock Violation Error	EE
+861	Slot 2 Interlock Violation Error	EE
+870	Invalid Current Setting	EE
+900	Internal system error	EE

[^32]NOTE SCPI-confirmed messages are described in Volume 2: Command Reference of the Standard Commands for Programmable Instruments. Refer to the SYSTem:ERRor? command.

# Signal Processing Sequence \& Data Flow 

- Signal processing sequence - Provides basic signal processing information, instrument features, and defines processing using Ratio or Channel Average.
- Data flow (remote operation) - Defines data flow for remote operation. Defines specific commands. Provides information on SENSe and sample buffer, continuous measurement mode, and scanning.


## Signal processing sequence

## Basic signal processing

The signal is applied to the multimeter input via front panel input terminals or a switching module. When a channel is closed or scanned, the signal connected to that channel (or channel-pair for 4 -wire measurements) is connected to the input.

Figure C-1 is a flowchart that shows the basic processing sequence of an input signal. With all the various features (filter, rel, math, ratio, channel average, buffer, etc.) of the Model 2790 disabled, the input signal is conditioned and measured (A/D conversion process). The reading is then displayed on the Model 2790.

Based on the selected measurement function and range, signal conditioning transforms the input signal into a DC voltage that is applied to the A/D converter.

The A/D Conversion Process measures the DC signal voltage and internal voltages that correspond to offsets (zero) and amplifier gains. These measurements are used in an algorithm to accurately calculate the reading of the input signal. The voltage, current, resistance, frequency (or period), or temperature reading is then displayed by the Model 2790.

> NOTE The multiple measurement process used by the A/D converter is known as autozeroing. It can be disabled to increase speed (only the signal is measured). However, stability and accuracy will be affected over time and changes in temperature.

Figure C-1
Basic signal processing


## Signal processing using instrument features

Figure C-2 shows the processing sequence for an input signal with various instrument features enabled. If a feature is not enabled, the reading simply falls through to the next enabled feature or to the display.

Figure C-2
Signal processing using instrument features


## OComp (offset-compensated ohms)

The Model 2790 performs a normal ohms measurement by sourcing a known current (I), measuring the voltage $(\mathrm{V})$, and then calculating the resistance $(\mathrm{R}=\mathrm{V} / \mathrm{I})$. Offsetcompensated ohms cancels the effects of thermal EMFs which can adversely affect lowresistance measurements.

With OCOMP enabled, the Model 2790 performs one normal resistance measurement and then loops back to perform a second resistance measurement with the internal current source set to its lowest level. The offset-compensated ohms reading is then calculated as shown in Figure C-2.

NOTE For details on OCOMP measurements, see "Offset-compensated ohms," page 3-20.

## Filter

The filter is used to stabilize noisy readings. With the filter enabled, the specified number of readings are averaged to yield a single filtered reading. There are two types of filters: moving and repeating.

A filter stack is used to temporarily store the specified number of readings to be averaged. In general, for the moving filter, each measurement process adds a reading to the stack (oldest reading discarded), and then averages the stack to yield a filtered reading. For the repeating filter, each measurement process fills the stack with new readings (all previous readings discarded), and then averages the stack to yield a filtered reading.

NOTE For details on filter operation, see "Filter," page 4-13.

## Output trigger pulse (VMC)

An output trigger pulse from the Model 2790 can be used to trigger an external instrument to perform an operation. In general, a trigger pulse is output at this point in flow chart for each processed reading.

An exception is the SCAN function for scanning. For the SCAN function, an output trigger is not output until after the specified number of channels (as set by the sample counter) are scanned.

NOTE For details on scan operation, see "Trigger models," page 7-4.

## Rel

Next in the signal processing sequence is the Rel operation. Rel is used to null offsets or subtract a baseline rel value from the reading. With Rel enabled, the Rel'ed reading is calculated as shown in Figure C-2.

NOTE For details on Rel operation, see "Relative," page 5-2.

## Math

Next in the signal processing sequence is a Math operation (mX+b, Percent, or Recipro$\mathrm{cal})$. These math operations allow you to mathematically manipulate the reading ( X ) that is applied to this block in the flowchart. With one of the Math functions enabled, the math result is calculated as shown in Figure C-2.

NOTE For details on Math operations, see "Math," page 5-7.

## Limits

The reading that is applied to the Limits block in the flow chart is not modified and is the reading that is displayed on the Model 2790. With Limits enabled, the reading is tested against two sets of high and low limits. Along with the displayed reading, annunciators and messages are used to indicate the result of the limits testing.

NOTE For details on Limits testing, see "Limits," page 9-2.

## Buffer

With the buffer (data store) enabled, each displayed reading is stored and timestamped. The buffer also provides statistics on the stored statistics. Buffer statistics include minimum and maximum, peak-to-peak, average, and standard deviation.
When buffer recall is enabled, stored readings and the buffer statistics are displayed on the Model 2790.

NOTE For details on the Buffer, see Section 6.

## Signal processing using Ratio or Ch Avg

With a switching module installed, the ratio or average of two channels can be calculated. Figure C-3 shows where Ratio or Ch Avg is calculated in the signal processing sequence.

Figure C-3
Signal processing using Ratio or Channel Average


With a channel closed and Ratio or Ch Avg enabled, the reading that is applied to the "Ratio or Ch Avg" block in the flow chart is used as the Chan A value for the calculation. The paired-channel then closes and that reading is used as the Chan B value for the calculation. Ratio or Ch Avg is then calculated as shown in Figure C-3.

As shown, the result of Ratio or Ch Avg can then be used by an enabled Math operation.
NOTE For details on these calculations, see "Ratio and channel average (7702 only)," page 5-18.

## Data flow (remote operation)

Remote operation can be used with triggering configured to perform a specified number of measurements and then stop. The various read commands (SENS:DATA?, FETCh?, READ?, MEAS?, CALC2:DATA?, TRACe:DATA?, and CALC1:DATA?) return the data array(s) acquired during the measurement cycle. Data flow for this triggering configuration is summarized by the block diagram shown in Figure C-4. Refer to this block diagram for the following discussion.

Figure C-4
Data flow for remote operation

SENSe
Measurement, Filter,   Rel, and Ratio   or Ch Avg

 INIT


NOTE For the following discussion, a "data array" is defined as the group of data elements that are included with each measured reading. Each data array includes the reading as well as the channel, reading number, units, timestamp, and limits result (see "FORMat:ELEMents <item list>," page 14-6, for details).

For example, assume the selected data elements to be returned by a read command include the reading, units designator, and reading number. Now assume a IVDC input and the READ? command is sent to trigger two readings and return the two data arrays. The two returned data arrays would look like this:
$+1.00000000 E+00 V D C,+00000$ RDNG $\#,+1.00000000 E+00 V D C .+00001$ RDNG $\#$
(Data Array\#1) (Data Array\#2)

## SENSe and sample buffer

The TRACe:CLEar command clears the data store, INITiate:CONTinuous OFF command disables continuous initiation, and TRIGger:COUNt 1 configures the instrument to perform one measurement cycle. The INIT command can then be used to initiate the measurement cycle. When the INIT command is sent, the programmed number of measurements (set by the SAMPle:COUNt command) are performed and the respective data is temporarily stored in the sample buffer.

For example, if 20 measurements were performed (SAMP:COUN 20), then 20 data arrays will be stored in the sample buffer. Data from this buffer is then routed to other enabled data flow blocks. The data in the sample buffer remains there until data from another measurement cycle overwrites the buffer.

NOTE The trigger count (TRIG:COUN) determines how many measurement cycles are performed. However, only the data arrays for the last measurement cycle end up in the sample buffer. For example, assume TRIG:COUN 2 and SAMP:COUN 20. The first measurement cycle stores 20 data arrays in the sample buffer. The second measurement cycle then overwrites the 20 data arrays in the sample buffer.

## [SENS[1]]:DATA[LATest]? [SENS[1]]:DATA:FRESh?

These commands are used to return (read) the last processed data array stored in the sample buffer.

## [SENS[1]]:DATA[:LATest]?

This command returns (reads) one data array. It returns the last processed data array stored in the sample buffer. If, for example, 10 data arrays are stored in the sample buffer, only the last $\left(10^{\text {th }}\right)$ data array is returned.

DATA? does not affect data in the sample buffer. Therefore, subsequent executions of DATA? acquires the same data array. In order to return a new reading, you must first trigger a new reading(s) and then use DATA?.

When using DATA? to retrieve data, it is good practice to include reading numbers in the data arrays. Reading numbers that do not change will indicate that the same data array is being returned.

## NOTE The FORMat:ELEMents command (see Section 14) is used to include the reading number (RNUM) element in each data array.

## [SENS[1]]:DATA:FRESh?

This command is similar to DATA[:LATest]? in that is also returns the last processed data array stored in the buffer. However, it can only be used once to retrieve the same data array. That is, the data array reading must be "fresh." Sending this command again to read the same (stale) data array will not work. It will generate an error (-230; data corrupt or stale) or cause the GPIB to time-out. In order for DATA:FRESh? to respond, you must first trigger a new (fresh) reading.

Using this command to retrieve data ensures that only new (fresh) readings are returned (no readings are repeated). However, as previously noted, problems may occur if a new reading is not ready (available) when this command is executed.

## FETCh? <br> READ? <br> MEASure? <br> CALC[1]:DATA[LATest]? <br> CALC[1]:DATA:FRESh?

As shown in Figure C-4, these commands are used to read data arrays output from the CALC1 Math block. However, if there is no math function enabled, these commands read the data arrays in the sample buffer.

NOTE $\begin{aligned} & \text { For more information on FETCh?, READ?, and MEASure?, see Section 13, } \\ & \\ & \\ & \text { "SCPI Signal Oriented Measurement Commands." }\end{aligned}$

## FETCh?

With no math function enabled, this command reads the data arrays stored in the sample buffer. If, for example, there are 20 data arrays stored in the sample buffer, then all 20 data arrays will be sent to the computer when FETCh? is executed.

With a math function ( $\mathrm{mX}+\mathrm{B}$, Percent, or $1 / \mathrm{X}$ ) enabled, the reading in each data array returned by FETch? is the result of the math calculation.

Note that FETCh? does not affect data in the sample buffer. Therefore, subsequent executions of FETCh? acquire the same data.

NOTE When an instrument setting that is relevant to the readings in the sample buffer is changed, the FETCh? command will cause error -230 (data corrupt or stale) or a bus time-out to occur. To get FETCh? working again, a new reading must be triggered.

## READ?

The READ? command performs an INITiate and then a FETCh?. The INITiate triggers a measurement cycle, which puts new data in the sample buffer. With no math function enabled, FETCh? reads the data arrays from the sample buffer. With a math function enabled, the readings are the result of the math calculation.

The following conditions must be met in order to use READ?:

- Continuous initiation must be disabled. It can be disabled by sending *RST or INIT:CONT OFF.
- If there are readings stored in the data store, the sample count (SAMP:COUN) must be set to 1 .
- To use a sample count $>1$, the data store must be cleared (empty). It can be cleared by sending TRAC:CLE.


## MEASure?

The MEASure? command places the instrument in a "one-shot" measurement mode (which places one data array in the sample buffer) and then performs a READ?. With no math function enabled, the one data array in the sample buffer is read. With a math function enabled, the reading is the result of the math calculation.

## CALC[1]:DATA[:LATest]? CALC[1]:DATA:FRESh?

These two commands are similar to the LATest? and FRESh? commands for the SENSe 1 subsystem, except that returned data arrays are the result of the math calculation. See [SENS[1]]:DATA[:LATest]? and [SENS[1]]:DATA:FRESh? for details on the differences between LATest? and FRESh?.

With a math function enabled, both CALC[1]:DATA? and CALC[1]:DATA:FRESh? return a single data array whose reading is the result of the math calculation. Note that the calculation is performed on the last data array stored in the sample buffer.These commands do not affect data in the sample buffer. Therefore, subsequent executions of these commands return the same data.

With no math function enabled, these commands return the last data array stored in the sample buffer.

## CALC3:LIM1:FAIL? CALC3:LIM2:FAIL?

Each reading applied to the CALC 3 Limit Tests block is tested when Limits operations are enabled. When comparing the reading to the programmed high and low limits of Limit 1, CALC3:LIM1:FAIL? returns a " 0 " (inside limits) or a " 1 " (outside limits). Similarly, CALC3:LIM2:FAIL? compares the reading to the high and low limits of Limit 2.

NOTE Each data array returned by the read commands (SENS:DATA?, FETCh?, READ?, MEAS?, CALC2:DATA?, TRACe:DATA?, and CALC1:DATA?) will include the result code for limit tests if the limits data element is selected. See "FORMat:ELEMents <item list>," page 14-6, to select the limits element and interpret the code.

## TRACe:DATA?

When the data store is enabled, sample buffer data or CALC1 results are stored in the buffer. The TRACe:DATA? command reads the entire contents of the data store. The selected feed (TRAC:FEED SENSe or TRAC:FEED CALC1), determines which group of readings are stored.

## CALC2:IMM? <br> CALC2:IMM <br> CALC2:DATA?

Statistical information (minimum, maximum, mean, standard deviation, and peak-to-peak) is available for the readings stored in the buffer (data store). When the desired calculation is selected (using the CALC2:FORMat command) and CALC2 is enabled (CALC2:STATe ON), use the CALC2:IMM? or CALC2:IMM command to perform the calculation:

- When CALC2:IMM? is used, the statistic is calculated and result is returned.
- When CALC2:IMM is used to calculate the statistic, the CALC2:DATA? command is then used to return the result.

The CALC2:DATA? command does not initiate a calculate operation. It simply returns the result of the last calculation.

If you calculate a statistic for an empty buffer, the number $9.910000 \mathrm{E}+37$ will be returned when it is read.

If you perform a calculation with no statistic selected (CALC2:FORM NONE) or CALC2 disabled (CALC2:STAT OFF), the result of the last statistic calculation will be returned when a read operation (CALC2:IMM? or CALC2:DATA?) is performed. However, if there was no calculation previously performed, the number $9.910000 \mathrm{E}+37$ will instead be returned.

## Continuous measurement mode

With continuous initiation enabled (INIT:CONT ON), the instrument continuously performs (and displays) measurements. Data flow is the same except that only one data array is stored in the sample buffer at a time. The single data array is then fed to the other enabled data flow blocks. When the next measurement occurs, that data array overwrites the previous data array in the sample buffer. The new data is then fed to the other data flow blocks. When SENS:DATA?, FETCh?, READ?, or CALC1:DATA? is sent, the latest data array will be returned.

NOTE The READ? command tries to perform an INIT operation. This will cause error -213 (Init ignored) to occur since the instrument is already initiating measurements.

> NOTE When the instrument is not in the continuous measurement mode, the INIT:CONT ON command can be sent to enable continuous initiation. However, if the sample count is $>1$, a setting conflict error ( -221 ) will occur. Set the sample count to 1 (SAMP:COUN 1) and then send INIT:CONT ON.

## Scanning

For remote operation, scanning is normally performed with continuous initiation disabled (INIT:CONT OFF). The sample count (SAMP:COUNt) specifies the number of channels to scan and store in the buffers (sample buffer and data store) and the trigger count (TRIG:COUNt) specifies the number of scans to perform. Note that if the trigger count is $>1$, the data for each subsequent scan will overwrite the data stored in the sample buffer and data store.

## 7702 module scanning

Once the scan is properly configured, INIT or READ? will start the scan. READ? also returns the scanned readings (data arrays) from the sample buffer or the CALC1 block if Math is enabled. FETCh? will not start a scan, but it will return the readings already stored.

While a scan is in process, SENS:DATA? and CALC1:DATA? commands can be used to return the latest data array. When used after the scan is finished, they will return the data array for the last stored reading.

## 7751/7752/7753 module scanning

Once the memory pattern locations and the scan are properly configured, INIT or READ? will start the scan. READ? also returns the scanned memory patterns readings. FETCh? will not start a scan, but it will return the readings already stored.

# Measurement Considerations 

- Measurement considerations - Provides information on thermoelectric potentials, thermoelectric generation, minimizing thermal EMFs, source resistance noise, magnetic fields, radio frequency interference, ground loops, shielding, and meter loading.


## Measurement considerations

Low-level voltage measurements made using the Model 2790 can be adversely affected by various types of noise or other unwanted signals that can make it very difficult to obtain accurate voltage readings. Some of the phenomena that can cause unwanted noise include thermoelectric effects (thermocouple action), source resistance noise, magnetic fields, and radio frequency interference. The following paragraphs discuss the most important of these effects and ways to minimize them.

NOTE For comprehensive information on low-level measurements, see the "Low Level Measurements" handbook, which is available from Keithley.

## Thermoelectric potentials

Thermoelectric potentials (thermal EMFs) are small electric potentials generated by differences in temperature at the junction of dissimilar metals. The following paragraphs discuss how such thermals are generated and ways to minimize their effects.

## Thermoelectric coefficients

As shown in Table D-1, the magnitude of thermal EMFs generated depends on the particular materials involved. Best results are obtained with clean copper-to-copper connections as indicated in the table.

Table D-1
Material thermoelectric coefficients

Material	Thermoelectric potential
Copper-Copper	$0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Copper-Silver	$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Copper-Gold	$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Copper-Cadmium/Tin	$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Copper-Lead/Tin	$1-3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Copper-Kovar	$40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Copper-Silicon	$400 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Copper-Copper Oxide	$1000 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

## Thermoelectric generation

Figure D-1 shows a representation of how thermal EMFs are generated. The test leads are made of the A material, while the source under test is the B material. The temperatures between the junctions are shown as $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$. To determine the thermal EMF generated, the following relationship may be used:
$\mathrm{E}_{\mathrm{T}}=\mathrm{Q}_{\mathrm{AB}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$
where: $\mathrm{E}_{\mathrm{T}}=$ Generated thermal EMF
$\mathrm{Q}_{\mathrm{AB}}=$ Thermoelectric coefficient of material A with respect to material $\mathrm{B}\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{1}=$ Temperature of B junction ( ${ }^{\circ} \mathrm{C}$ or K )
$\mathrm{T}_{2}=$ Temperature of A junction $\left({ }^{\circ} \mathrm{C}\right.$ or K$)$
In the unlikely event that the two junction temperatures are identical, no thermal EMFs will be generated. More often, the two junction temperatures will differ and considerable thermal EMFs will be generated.

A typical test setup will probably have several copper-to-copper junctions. As pointed out earlier, each junction can have a thermoelectric coefficient as high as $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Since the two materials will frequently have a several degree temperature differential, it is easy to see how thermal potentials of several microvolts can be generated even if reasonable precautions are taken.

Figure D-1
Thermal EMF generation


## Minimizing thermal EMFs

To minimize thermal EMFs, use only copper wires, lugs, and test leads for the entire test setup. Also, it is imperative that all connecting surfaces are kept clean and free of oxides. As noted in Table D-1, copper-to-copper oxide junctions can result in thermal EMFs as high as $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Even when low-thermal cables and connections are used, thermal EMFs can still be a problem in some cases. It is especially important to keep the two materials forming the junction at the same temperature. Keeping the two junctions close together is one way to minimize such thermal problems. Also, keep all junctions away from air currents; in some cases, it may be necessary to thermally insulate sensitive junctions to minimize temperature variations. When a $\mathrm{Cu}-\mathrm{Cu}$ connection is made, sufficient pressure must be applied to ensure the connection is gas tight to prevent future oxidation.

In some cases, connecting the two thermal junctions together with good thermal contact to a common heat sink may be required. Unfortunately, most good electrical insulators are poor conductors of heat. In cases where such low thermal conductivity may be a problem, special insulators that combine high electrical insulating properties with high thermal conductivity may be used. Some examples of these materials include hard anodized aluminum, sapphire, and diamond.

## Nulling residual thermal offsets

Even if all reasonable precautions are taken, some residual thermal offsets may still be present. These offsets can be minimized by using the Model 2790 Relative feature to null them out. To do so, place the instrument on the 100 mV range and short the end of the connecting cable nearest the measured source (first disconnect the cable from the source to avoid shorting out the source). After allowing the reading to settle, press the front panel REL button to null the offset. Select the appropriate range and make your measurement as usual.

## Source resistance noise

Noise present in the source resistance is often the limiting factor in the ultimate resolution and accuracy of Model 2790 measurements. The following paragraphs discuss the generation of Johnson noise as well as ways to minimize such noise.

## Johnson noise equation

The amount of noise present in a given resistance is defined by the Johnson noise equation as follows:

$$
\mathrm{E}_{\mathrm{RMS}}=\sqrt{4 \mathrm{kTRF}}
$$

where: $E_{\text {RMS }}=$ rms value of the noise voltage
$\mathrm{k}=$ Boltzmann's constant $\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
$\mathrm{T} \quad=$ Temperature (K)
R = Source resistance (ohms)
F $\quad=$ Noise bandwidth ( Hz )
At a room temperature of $293 \mathrm{~K}\left(20^{\circ} \mathrm{C}\right)$, the above equation simplifies to:

$$
\mathrm{E}_{\mathrm{RMS}}=1.27 \times 10^{-10} \sqrt{\mathrm{RF}}
$$

Since the peak to peak noise is five times the rms value $99 \%$ of the time, the peak to peak noise can be equated as follows:

$$
E_{p-p}=6.35 \times 10^{-10} \sqrt{\mathrm{RF}}
$$

For example, with a source resistance of $10 \mathrm{k} \Omega$, the noise over a 0.5 Hz bandwidth at room temperature will be:

$$
\begin{aligned}
& E_{p-p}=6.35 \times 10^{-10} \sqrt{\left(10 \times 10^{3}\right)(0.5)} \\
& E_{p-p}=45 n V
\end{aligned}
$$

## Minimizing source resistance noise

From the above examples, it is obvious that noise can be reduced in several ways: (1) lower the temperature, (2) reduce the source resistance, and (3) narrow the bandwidth. Of these three, lowering the resistance is the least practical because the signal voltage will be reduced more than the noise. For example, decreasing the resistance of a current shunt by a factor of 100 will also reduce the voltage by a factor of 100 , but the noise will be decreased only by a factor of 10 .
Very often, cooling the source is the only practical method available to reduce noise. Again, however, the available reduction is not as large as it might seem because the reduction is related to the square root of the change in temperature. For example, to cut the noise in half, the temperature must be decreased from 293 K to 73.25 K , a four-fold decrease.

## Magnetic fields

When a conductor loop cuts through magnetic lines of force, a very small current is generated. This phenomenon will frequently cause unwanted signals to occur in the test leads of a test system. If the conductor has sufficient length or cross-sectional area, even weak magnetic fields such as those of the earth can create sufficient signals to affect low-level measurements.

Three ways to reduce these effects are: (1) reduce the lengths of the connecting cables, (2) minimize the exposed circuit area, and (3) change the orientation of the leads or cables. In extreme cases, magnetic shielding may be required. Special metal with high permeability at low flux densities (such as mu metal) is effective at reducing these effects.

Even when the conductor is stationary, magnetically-induced signals may still be a problem. Fields can be produced by various sources such as the AC power line voltage. Large inductors such as power transformers can generate substantial magnetic fields, so care must be taken to keep the Model 2790 voltage source and connecting cables a good distance away from these potential noise sources.

## Radio frequency interference

RFI (Radio Frequency Interference) is a general term used to describe electromagnetic interference over a wide range of frequencies across the spectrum. Such RFI can be particularly troublesome at low signal levels, but it can also affect measurements at high levels if the fields are of sufficient magnitude.

RFI can be caused by steady-state sources such as radio or TV signals, some types of electronic equipment (microprocessors, high speed digital circuits, etc.), or it can result from impulse sources, as in the case of arcing in high-voltage environments. In either case, the effect on the measurement can be considerable if enough of the unwanted signal is present.

RFI can be minimized in several ways. The most obvious method is to keep the Model 2790 voltage source and signal leads as far away from the RFI source as possible. Additional shielding of the instrument, signal leads, sources, and other measuring instruments will often reduce RFI to an acceptable level. In extreme cases, a speciallyconstructed screen room may be required to sufficiently attenuate the troublesome signal.

The Model 2790 digital filter may help to reduce RFI effects in some situations. In some cases, additional external filtering may also be required. Keep in mind, however, that filtering may have detrimental effects, such as increased settling time, on the desired signal.

## Ground loops

When two or more instruments are connected together, care must be taken to avoid unwanted signals caused by ground loops. Ground loops usually occur when sensitive instrumentation is connected to other instrumentation with more than one signal return path, such as power line ground. As shown in Figure D-2, the resulting ground loop causes current to flow through the instrument LO signal leads and then back through power line ground. This circulating current develops a small but undesirable voltage between the LO terminals of the two instruments. This voltage will be added to the source voltage, affecting the accuracy of the measurement.

Figure D-2
Power line ground loops


Figure D-3 shows how to connect several instruments together to eliminate this type of ground loop problem. Here, only one instrument is connected to power line ground.

Ground loops are not normally a problem with instruments like the Model 2790 that have isolated LO terminals. However, all instruments in the test setup may not be designed in this manner. When in doubt, consult the manual for all instrumentation in the test setup.

Figure D-3
Eliminating ground loops


## Shielding

WARNING Do not float input LO more than $30 \mathrm{~V} \mathrm{rms}, 42.4 \mathrm{~V}$ peak above earth ground with an exposed shield connected to input LO. To avoid a possible shock hazard, surround the LO shield with a second safety shield that is insulated from the inner shield. Connect this safety shield to safety earth ground using \#18 AWG minimum wire before use.

Proper shielding of all signal paths and sources being measured is important to minimize noise pickup in virtually any low-level measurement situation. Otherwise, interference from such noise sources as line frequency and RF fields can seriously corrupt measurements, rendering experimental data virtually useless.

In order to minimize noise, a closed metal shield surrounding the source may be necessary (Figure D-4). This shield should be connected to input LO in most cases, although better noise performance may result with the shield connected to chassis ground in some situations.

Figure D-4
Shielding example


## Meter loading

Loading of the voltage source by the Model 2790 becomes a consideration for high source resistance values. As the source resistance increases, the error caused by meter loading increases.

Figure D-5 shows the method used to determine the percent error due to meter loading. The voltage source, $\mathrm{V}_{\mathrm{S}}$, has a source resistance, $\mathrm{R}_{\mathrm{S}}$, while the input resistance of the Model 2790 is $R_{I}$ and the voltage measured by the nanovoltmeter is $V_{M}$.

Figure D-5

## Meter loading



The voltage actually measured by the meter is attenuated by the voltage divider action of $\mathrm{R}_{\mathrm{S}}$ and $\mathrm{R}_{\mathrm{I}}$, and it can be calculated as follows:

$$
V_{M}=\frac{V_{S} R_{L}}{R_{I}+R_{S}}
$$

This relationship can be modified to directly compute for percent error:

$$
\text { Percent error }=\frac{100 R_{S}}{R_{I}+R_{S}}
$$

From the above equation, it is obvious that the input resistance of the Model 2790 must be at least 999 times the value of source resistance if loading error is to be kept to within $0.1 \%$.

## Temperature Equations

- Thermistor equation - Documents the Steinhart-Hart equation which is used to calculate thermistor temperature.
- RTD equation - Documents the Callendar-Van Dusen equation which is used to calculate the temperature vs. resistance readings listed in the RTD reference tables.


## Thermistor equation

Temperature (in Kelvin) is calculated using the Steinhart-Hart equation as follows:

$$
\mathrm{T}_{\mathrm{K}}=\frac{1}{\mathrm{~A}+(\mathrm{B} \ln \mathrm{R})+\left[\mathrm{C}(\ln \mathrm{R})^{3}\right]}
$$

where: $T_{K}$ is the calculated temperature in Kelvin.
$\operatorname{lnR}$ is the natural $\log$ of the measured resistance of the thermistor.
$\mathrm{A}, \mathrm{B}$, and C are the curve fitting constants. The constants for the three thermistor types used by the Model 2790 are listed in Table E-1.

Table E-1
Model 2790 curve fitting constants for thermistors

Constant	$\mathbf{2 2 5 2 \Omega}$ at $25^{\circ} \mathrm{C}$   (Series 44004 )	$\mathbf{5 0 0 0 \Omega}$ at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$   (Series 44007)	$10 \mathrm{k} \Omega$ at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$   (Series 44006)
A	0.0014733	0.001288	0.0010295
B	0.0002372	0.0002356	0.0002391
C	$1.074 \mathrm{e}-7$	$9.557 \mathrm{e}-8$	$1.568 \mathrm{e}-7$

Selecting a thermistor - The thermistor manufacturers specified curve fitting values (A, B, and C) may not be exactly the same as the ones used by the Model 2790. If they are not exactly the same, perform the following steps to select a thermistor to use with the Model 2790:

NOTE The specified thermistor temperature measurement accuracy of the Model 2790 (see Appendix A) is based on the curve fitting constants listed in Table E-1. If the thermistor manufacturer's curve fitting constants are not exactly the same as the ones listed in Table E-1, accuracy will be affected.

1. Choose the thermistor type to be used; $2252 \Omega, 5 \mathrm{k} \Omega$, or $10 \mathrm{k} \Omega$.
2. Compare the $\mathrm{A}, \mathrm{B}$, and C constants from the thermistor manufacturer with those used by the Model 2790 (see Table E-1).
3. Select a thermistor that closely matches the A, B, and C constants in Table E-1.
4. Analyze the differences between the two sets of curve fitting constants to determine the affect on measurement accuracy.

Converting K to ${ }^{\circ} \mathrm{C}$ - The temperature in Kelvin can be converted to ${ }^{\circ} \mathrm{C}$ as follows:
$\mathrm{T}_{{ }^{\circ} \mathrm{C}}=\mathrm{T}_{\mathrm{K}}-273.15$
where: $\mathrm{T}^{\circ} \mathrm{C}$ is the temperature in ${ }^{\circ} \mathrm{C}$.
$\mathrm{T}_{\mathrm{K}}$ is the calculated Kelvin temperature.
Example - Calculate the temperature for a Series 44007 thermistor that measures $5 \mathrm{k} \Omega$ (R):

$$
\begin{aligned}
\ln \mathrm{R} & =\ln (5000)=8.5172 \\
\mathrm{~A} & =0.001288 \\
\mathrm{~B} & =0.0002356 \\
\mathrm{C} & =9.557 \mathrm{e}-8 \\
\mathrm{~T}_{\mathrm{K}} & =1 /\left\{\mathrm{A}+(\mathrm{B} \ln \mathrm{R})+\left[(\mathrm{C})(\ln \mathrm{R})^{3}\right]\right\} \\
& =1 /\left\{0.001288+[(0.0002356)(8.5172)]+\left[(9.557 \mathrm{e}-8)\left(8.5172^{3}\right)\right]\right\} \\
& =1 /(0.001288+0.002007+0.000059) \\
& =1 / 0.003354 \\
& =298.15 \\
\mathrm{~T}_{{ }^{\circ} \mathrm{C}} & =\mathrm{T}_{\mathrm{K}}-273.15 \\
& =298.15-273.15 \\
& =25^{\circ} \mathrm{C}
\end{aligned}
$$

## RTD equation

The temperature vs. resistance readings listed in the RTD reference tables are calculated using the Callendar-Van Dusen equation:
$\mathrm{R}_{\mathrm{RTD}}=\mathrm{R}_{0}\left[1+\mathrm{AT}+\mathrm{BT}^{2}+\mathrm{CT}^{3}(\mathrm{~T}-100)\right]$
where: $R_{\text {RTD }}$ is the calculated resistance of the RTD
$\mathrm{R}_{0}$ is the known RTD resistance at $0^{\circ} \mathrm{C}$
T is the temperature in ${ }^{\circ} \mathrm{C}$
A = alpha $[1+($ delta $/ 100)]$
B $=-1$ (alpha)(delta)(1e-4)
$\mathrm{C}=-1$ (alpha)(beta)(1e-8)
The alpha, beta, and delta values are listed in Table E-2.
Table E-2
RTD parameters

Type	Standard	Alpha	Beta	Delta	at $\mathbf{0}^{\circ} \mathbf{C}$
PT100	ITS-90	0.003850	0.10863	1.49990	$100 \Omega$
D100	ITS-90	0.003920	0.10630	1.49710	$100 \Omega$
F100	ITS-90	0.003900	0.11000	1.49589	$100 \Omega$
PT385	IPTS-68	0.003850	0.11100	1.50700	$100 \Omega$
PT3916	IPTS-68	0.003916	0.11600	1.50594	$100 \Omega$

Example - Calculate the resistance of a PT100 RTD at $100^{\circ} \mathrm{C}(\mathrm{T})$. The following $\mathrm{R}_{0}(\Omega$ at $0^{\circ} \mathrm{C}$ ), alpha, beta, and delta values are used for the PT100 RTD (Table E-2):

```
\(\mathrm{T}=100^{\circ} \mathrm{C}\)
\(\mathrm{R}_{0}\left(\Omega\right.\) at \(\left.0^{\circ} \mathrm{C}\right)=100 \Omega\)
alpha \(=0.003850\)
beta \(=0.10863\)
delta \(=1.49990\)
```

Using the above alpha, beta, and delta values, A, B, and C are calculated as follows:

$$
\begin{aligned}
\mathrm{A} & =0.00385[1+(1.4999 / 100)] \\
& =0.00385(1.014999) \\
& =0.00391 \\
\mathrm{~B} & =-1(0.00385)(1.4999)(1 \mathrm{e}-4) \\
& =-1(0.00577)(1 \mathrm{e}-4) \\
& =-5.77 \mathrm{e}-7 \\
\mathrm{C} & =-1(0.00385)(0.10863)(1 \mathrm{e}-8) \\
& =-1(0.000418)(1 \mathrm{e}-8) \\
& =-4.18 \mathrm{e}-12
\end{aligned}
$$

The resistance of the RTD at $100^{\circ} \mathrm{C}\left(\mathrm{R}_{100}\right)$ is then calculated as follows:

$$
\begin{aligned}
\mathrm{R}_{100} & =\mathrm{R}_{0}\left[1+\mathrm{AT}+\mathrm{BT}^{2}+\mathrm{CT}^{3}(\mathrm{~T}-100)\right] \\
& =100\left\{1+[(0.00391)(100)]+\left[(-5.77 \mathrm{e}-7)\left(100^{2}\right)\right]+\left[(-4.18 \mathrm{e}-12)\left(100^{3}\right)(100-100)\right]\right\} \\
& =100[1+0.391+(-0.006)+0] \\
& =100(1.385) \\
& =138.5 \Omega
\end{aligned}
$$

## Introduction

The IEEE-488 bus is a communication system between two or more electronic devices. A device can be either an instrument or a computer. When a computer is used on the bus, it serves as a supervisor of the communication exchange between all the devices and is known as the controller. Supervision by the controller consists of determining which device will talk and which device will listen. As a talker, a device will output information and, as a listener, a device will receive information. To simplify the task of keeping track of the devices, a unique address number is assigned to each.

On the bus, only one device can talk at a time and is addressed to talk by the controller. The device that is talking is known as the active talker. The devices that need to listen to the talker are addressed to listen by the controller. Each listener is then referred to as an active listener. Devices that do not need to listen are instructed to unlisten. The reason for the unlisten instruction is to optimize the speed of bus information transfer since the task of listening takes up bus time.

Through the use of control lines, a handshake sequence takes place in the transfer process of information from a talker to a listener. This handshake sequence helps ensure the credibility of the information transfer. The basic handshake sequence between an active controller (talker) and a listener is as follows:

1. The listener indicates that it is ready to listen.
2. The talker places the byte of data on the bus and indicates that the data is available to the listener.
3. The listener, aware that the data is available, accepts the data and then indicates that the data has been accepted.
4. The talker, aware that the data has been accepted, stops sending data and indicates that data is not being sent.
5. The listener, aware that there is no data on the bus, indicates that it is ready for the next byte of data.

## Bus description

The IEEE-488 bus, which is also referred to as the GPIB (General Purpose Interface Bus), was designed as a parallel transfer medium to optimize data transfer without using an excessive number of bus lines. In keeping with this goal, the bus has only eight data lines that are used for both data and with most commands. Five bus management lines and three handshake lines round out the complement of bus signal lines.

A typical setup for controlled operation is shown in Figure F-1. Generally, a system will contain one controller and a number of other instruments to which the commands are given. Device operation is categorized into three operators: controller, talker, and listener. The controller controls the instruments on the bus. The talker sends data while a listener receives data. Depending on the type of instrument, any particular device can be a talker only, a listener only, or both a talker and listener.

Figure F-1
IEEE-488 bus configuration


There are two categories of controllers: system controller and basic controller. Both are able to control other instruments, but only the system controller has the absolute authority in the system. In a system with more than one controller, only one controller may be active at any given time. Certain protocol is used to pass control from one controller to another.

The IEEE- 488 bus is limited to 15 devices, including the controller. Thus, any number of talkers and listeners up to that limit may be present on the bus at one time. Although several devices may be commanded to listen simultaneously, the bus can have only one active talker, or communications would be scrambled.

A device is placed in the talk or listen state by sending an appropriate talk or listen command. These talk and listen commands are derived from an instrument's primary address. The primary address may have any value between 0 and 31, and is generally set by rear panel DIP switches or programmed in from the front panel of the instrument. The actual listen address value sent out over the bus is obtained by ORing the primary address with $\$ 20$. For example, if the primary address is $\$ 16$, the actual listen address is $\$ 36$
$(\$ 36=\$ 16+\$ 20)$. In a similar manner, the talk address is obtained by ORing the primary address with $\$ 40$. With the present example, the talk address derived from a primary address of $\$ 16$ would be $\$ 56(\$ 56=\$ 16+\$ 40)$.

The IEEE-488 standards also include another addressing mode called secondary addressing. Secondary addresses lie in the range of $\$ 60-\$ 7 \mathrm{~F}$. Note, however, that many devices, including the Model 2790, do not use secondary addressing.

Once a device is addressed to talk or listen, the appropriate bus transactions take place. For example, if the instrument is addressed to talk, it places its data string on the bus one byte at a time. The controller reads the information and the appropriate software can be used to direct the information to the desired location.

## Bus lines

The signal lines on the IEEE-488 bus are grouped into three different categories: data lines, management lines, and handshake lines. The data lines handle bus data and commands, while the management and handshake lines ensure that proper data transfer and operation takes place. Each bus line is active low, with approximately zero volts representing a logic 1 (true). The following paragraphs describe the operation of these lines.

## Data lines

The IEEE-488 bus uses eight data lines that transfer data one byte at a time. DIO1 (Data Input/Output) through DIO8 (Data Input/Output) are the eight data lines used to transmit both data and multiline commands and are bi-directional. The data lines operate with low true logic.

## Bus management lines

The five bus management lines help to ensure proper interface control and management. These lines are used to send the uniline commands.

ATN (Attention) - The ATN state determines how information on the data bus is to be interpreted.

IFC (Interface Clear) - The IFC line controls clearing of instruments from the bus.
REN (Remote Enable) - The REN line is used to place the instrument on the bus in the remote mode.

EOI (End or Identify) - The EOI line is used to mark the end of a multi-byte data transfer sequence.

SRQ (Service Request) - The SRQ line is used by devices when they require service from the controller.

## Handshake lines

The bus handshake lines operate in an interlocked sequence. This method ensures reliable data transmission regardless of the transfer rate. Generally, data transfer will occur at a rate determined by the slowest active device on the bus.

One of the three handshake lines is controlled by the source (the talker sending information), while the remaining two lines are controlled by accepting devices (the listener or listeners receiving the information). The three handshake lines are:

DAV (DATA VALID) - The source controls the state of the DAV line to indicate to any listening devices whether or not data bus information is valid.

NRFD (Not Ready For Data) - The acceptor controls the state of NRFD. It is used to signal to the transmitting device to hold off the byte transfer sequence until the accepting device is ready.

NDAC (Not Data Accepted) - NDAC is also controlled by the accepting device. The state of NDAC tells the source whether or not the device has accepted the data byte.

The complete handshake sequence for one data byte is shown in Figure F-2. Once data is placed on the data lines, the source checks to see that NRFD is high, indicating that all active devices are ready. At the same time, NDAC should be low from the previous byte transfer. If these conditions are not met, the source must wait until NDAC and NRFD have the correct status. If the source is a controller, NRFD and NDAC must be stable for at least 100 ns after ATN is set true. Because of the possibility of a bus hang up, many controllers have time-out routines that display messages in case the transfer sequence stops for any reason.

Once all NDAC and NRFD are properly set, the source sets DAV low, indicating to accepting devices that the byte on the data lines is now valid. NRFD will then go low and NDAC will go high once all devices have accepted the data. Each device will release NDAC at its own rate, but NDAC will not be released to go high until all devices have accepted the data byte.

The previous sequence is used to transfer both data, talk, and listen addresses, as well as multiline commands. The state of the ATN line determines whether the data bus contains data, addresses, or commands as described in the following paragraphs.

Figure F-2
IEEE-488 handshake sequence


## Bus commands

The instrument may be given a number of special bus commands through the IEEE-488 interface. The following paragraphs briefly describe the purpose of the bus commands which are grouped into the following four categories:

1. Uniline commands - Sent by setting the associated bus lines true. For example, to assert REN (Remote Enable), the REN line would be set low (true).
2. Multiline commands - General bus commands which are sent over the data lines with the ATN line true (low).
3. Common commands - Commands that are common to all devices on the bus; sent with ATN high (false).
4. SCPI commands - Commands that are particular to each device on the bus; sent with ATN (false).

These bus commands and their general purpose are summarized in Table F-1.

## Table F-1

IEEE-488 bus command summary

Command type	Command	State of ATN line	Comments
Uniline	REN (Remote Enable)	X	Set up devices for remote operation.
	EOI (End or Identify)	X	Marks end of transmission.
	IFC (Interface Clear)	X	Clears interface.
	ATN (Attention)	Low	Defines data bus contents.
	SRQ (Service Request)	X	Controlled by external device.
Multiline   Universal	LLO (Local Lockout)	Low	Locks out local operation.
	DCL (Device Clear)	Low	Returns device to default conditions.
	SPE (Serial Poll Enable)	Low	Enables serial polling.
	SPD (Serial Poll Disable)	Low	Disables serial polling.
Addressed	SDC (Selective Device Clear)	Low	Returns unit to default conditions.
	GTL (Go To Local)	Low	Returns device to local.
Unaddressed	UNL (Unlisten)	Low	Removes all listeners from the bus.
	UNT (Untalk)	Low	Removes any talkers from the bus.
Common	-	High	Programs IEEE-488.2 compatible instruments for common operations.
SCPI	-	High	Programs SCPI-compatible instruments for particular operations.

## Uniline commands

ATN, IFC, and REN are asserted only by the controller. SRQ is asserted by an external device. EOI may be asserted either by the controller or other devices depending on the direction of data transfer. The following is a description of each command. Each command is sent by setting the corresponding bus line true.

REN (Remote Enable) - REN is sent to set up instruments on the bus for remote operation. When REN is true, devices will be removed from the local mode. Depending on device configuration, all front panel controls except the LOCAL button (if the device is so equipped) may be locked out when REN is true. Generally, REN should be sent before attempting to program instruments over the bus.

EOI (End or Identify) - EOI is used to positively identify the last byte in a multi-byte transfer sequence, thus allowing data words of various lengths to be transmitted easily.

IFC (Interface Clear) - IFC is used to clear the interface and return all devices to the talker and listener idle states.

ATN (Attention) — The controller sends ATN while transmitting addresses or multiline commands.

SRQ (Service Request) - SRQ is asserted by a device when it requires service from a controller.

## Universal multiline commands

Universal commands are those multiline commands that require no addressing. All devices equipped to implement such commands will do so simultaneously when the commands are transmitted. As with all multiline commands, these commands are transmitted with ATN true.

LLO (Local Lockout) - LLO is sent to the instrument to lock out the LOCAL key and all front panel controls.

DCL (Device Clear) - DCL is used to return instruments to some default state. Instruments usually return to their power-up conditions.

SPE (Serial Poll Enable) - SPE is the first step in the serial polling sequence which is used to determine which device has requested service.

SPD (Serial Poll Disable) - SPD is used by the controller to remove all devices on the bus from the serial poll mode and is generally the last command in the serial polling sequence.

## Addressed multiline commands

Addressed commands are multiline commands that must be preceded by the device listen address before that instrument will respond to the command in question. Note that only the addressed device will respond to these commands. Both the commands and the address preceding it are sent with ATN true.

SDC (Selective Device Clear) - The SDC command performs essentially the same function as the DCL command except that only the addressed device responds. Generally, instruments return to their power-up default conditions when responding to the SDC command.

GTL (Go To Local) - The GTL command is used to remove instruments from the remote mode. With some instruments, GTL also unlocks front panel controls if they were previously locked out with the LLO command.

GET (Group Execute Trigger) - The GET command is used to trigger devices to perform a specific action that depends on device configuration (for example, take a reading). Although GET is an addressed command, many devices respond to GET without addressing.

## Address commands

Addressed commands include two primary command groups and a secondary address group. ATN is true when these commands are asserted. The commands include:

LAG (Listen Address Group) - These listen commands are derived from an instrument's primary address and are used to address devices to listen. The actual command byte is obtained by ORing the primary address with $\$ 20$.

TAG (Talk Address Group) - The talk commands are derived from the primary address by ORing the address with $\$ 40$. Talk commands are used to address devices to talk.

SCG (Secondary Command Group) - Commands in this group provide additional addressing capabilities. Many devices (including the Model 2790) do not use these commands.

## Unaddress commands

The two unaddress commands are used by the controller to remove any talkers or listeners from the bus. ATN is true when these commands are asserted.

UNL (Unlisten) — Listeners are placed in the listener idle state by the UNL command.
UNT (Untalk) - Any previously commanded talkers will be placed in the talker idle state by the UNT command.

## Common commands

Common commands are commands that are common to all devices on the bus. These commands are designated and defined by the IEEE-488.2 standard.

Generally, these commands are sent as one or more ASCII characters that tell the device to perform a common operation, such as reset. The IEEE-488 bus treats these commands as data in that ATN is false when the commands are transmitted.

## SCPI commands

SCPI commands are commands that are particular to each device on the bus. These commands are designated by the instrument manufacturer and are based on the instrument model defined by the Standard Commands for Programmable Instruments (SCPI) Consortium's SCPI standard.

Generally, these commands are sent as one or more ASCII characters that tell the device to perform a particular operation, such as setting a range or closing a relay. The IEEE-488 bus treats these commands as data in that ATN is false when the commands are transmitted.

## Command codes

Command codes for the various commands that use the data lines are summarized in Figure F-3. Hexadecimal and the decimal values for the various commands are listed in Table F-2.

Table F-2
Hexadecimal and decimal command codes

Command	Hex value	Decimal value
GTL	01	1
SDC	04	4
GET	08	8
LLO	11	17
DCL	14	20
SPE	18	24
SPD	19	25
LAG	$20-3 \mathrm{~F}$	$32-63$
TAG	$40-5 \mathrm{~F}$	$64-95$
SCG	$60-7 \mathrm{~F}$	$96-127$
UNL	3 F	63
UNT	5 F	95

Figure F-3
Command codes


## Typical command sequences

For the various multiline commands, a specific bus sequence must take place to properly send the command. In particular, the correct listen address must be sent to the instrument before it will respond to addressed commands. Table F-3 lists a typical bus sequence for sending the addressed multiline commands. In this instance, the SDC command is being sent to the instrument. UNL is generally sent as part of the sequence to ensure that no other active listeners are present. Note that ATN is true for both the listen command and the SDC command byte itself.

Table F-3
Typical addressed multiline command sequence

			Data bus		
Step	Command	ATN state	ASCII	Hex	Decimal
1		UNL	Set low	$?$	$3 F$
2	LAG*	Stays low	,	36	54
3	SDC	Stays low	EOT	04	4
4		Returns high			

*Assumes primary address $=16$.

Table F-4 gives a typical common command sequence. In this instance, ATN is true while the instrument is being addressed, but it is set high while sending the common command string.

Table F-4
Typical addressed common command sequence

Step	Command	ATN state	Data bus		
			Hex	Decimal	
1	UNL		$?$	$3 F$	63
2	LAG*	Stays low	$?$	36	54
3	Data	Set high	$*$	2 A	42
4	Data	Stays high	R	52	82
5	Data	Stays high	S	53	83
6	Data	Stays high	T	54	84

[^33]
## IEEE command groups

Command groups supported by the Model 2790 are listed in Table F-5. Common commands and SCPI commands are not included in this list.

Table F-5
IEEE command groups

HANDSHAKE COMMAND GROUP	
	$\begin{aligned} & \text { NDAC = NOT DATA ACCEPTED } \\ & \text { NRFD = NOT READY FOR DATA } \\ & \text { DAV = DATA VALID } \end{aligned}$
UNIVERSAL COMMAND GROUP	
	$\begin{aligned} & \text { ATN = ATTENTION } \\ & \text { DCL = DEVICE CLEAR } \\ & \text { IFC = INTERFACE CLEAR } \\ & \text { REN = REMOTE ENABLE } \\ & \text { SPD = SERIAL POLL DISABLE } \\ & \text { SPE = SERIAL POLL ENABLE } \end{aligned}$
ADDRESS COMMAND GROUP	
LISTEN	$\begin{aligned} & \text { LAG = LISTEN ADDRESS GROUP } \\ & \text { MLA = MY LISTEN ADDRESS } \\ & \text { UNL = UNLISTEN } \end{aligned}$
TALK	$\begin{aligned} & \text { TAG }=\text { TALK ADDRESS GROUP } \\ & \text { MTA }=\text { MY TALK ADDRESS } \\ & \text { UNT }=\text { UNTALK } \\ & \text { OTA }=\text { OTHER TALK ADDRESS } \end{aligned}$
ADDRESSED COMMAND GROUP	
	$\begin{aligned} & \text { ACG = ADDRESSED COMMAND GROUP } \\ & \text { GTL }=\text { GO TO LOCAL } \\ & \text { SDC }=\text { SELECTIVE DEVICE CLEAR } \end{aligned}$
STATUS	COMMAND GROUP
	$\begin{aligned} & \text { RQS = REQUEST SERVICE } \\ & \text { SRQ = SERIAL POLL REQUEST } \\ & \text { STB = STATUS BYTE } \\ & \text { EOI = END OR IDENTIFY } \end{aligned}$

## Interface function codes

The interface function codes, which are part of the IEEE-488 standards, define an instrument's ability to support various interface functions and should not be confused with programming commands found elsewhere in this manual. The interface function codes for the Model 2790 are listed in Table F-6.

Table F-6
Model 2790 interface function codes

Code	
SH1	Source Handshake capability
AH1	Acceptor Handshake capability
T5	Talker (basic talker, talk-only, serial poll, unaddressed to talk on LAG)
L4	Listener (basic listener, unaddressed to listen on TAG)
SR1	Service Request capability
RL1	Remote/Local capability
PP0	No Parallel Poll capability
DC1	Device Clear capability
DT1	Device Trigger capability
C0	No Controller capability
E1	Open collector bus drivers
TE0	No Extended Talker capability
LE0	No Extended Listener capability

The codes define Model 2790 capabilities as follows:
SH (Source Handshake Function) - SH1 defines the ability of the instrument to initiate the transfer of message/data over the data bus.

AH (Acceptor Handshake Function) - AH1 defines the ability of the instrument to guarantee proper reception of message/data transmitted over the data bus.

T (Talker Function) - The ability of the instrument to send data over the bus to other devices is provided by the T function. Instrument talker capabilities (T5) exist only after the instrument has been addressed to talk.

L (Listener Function) - The ability for the instrument to receive device-dependent data over the bus from other devices is provided by the $L$ function. Listener capabilities (L4) of the instrument exist only after it has been addressed to listen.

SR (Service Request Function) - SR1 defines the ability of the instrument to request service from the controller.

RL (Remote-Local Function) - RL1 defines the ability of the instrument to be placed in the remote or local modes.

PP (Parallel Poll Function) - The instrument does not have parallel polling capabilities (PP0).

DC (Device Clear Function) - DC1 defines the ability of the instrument to be cleared (initialized).

DT (Device Trigger Function) - DTI defines the ability of the Model 2790 to have readings triggered.
C (Controller Function) - The instrument does not have controller capabilities (C0).
E (Bus Driver Type) - The instrument has open-collector bus drivers (E1).
TE (Extended Talker Function) - The instrument does not have extended talker capabilities (TE0).

LE (Extended Listener Function) - The instrument does not have extended listener capabilities (LEO).

## Calibration Reference

## Introduction

This appendix contains detailed information about the various Model 2790 remote calibration commands and also includes a sample calibration program. Section 17 of this manual covers detailed calibration procedures. For information about additional commands to control other instrument functions, refer to SCPI command reference section of this manual.

## Command summary

Table G-1 summarizes Model 2790 calibration commands.
Table G-1
Remote calibration command summary

Command	Description
```:CALibration :PROTected :CODE <up to 8 char. string> :COUNt? :INITiate :LOCK :LOCK? :SAVE :DATE <yyyy>, <mm>, <dd> :DATE? :NDUE <yyyy>, <mm>, <dd> :NDUE? :DC :STEP0 :STEP1 :STEP2 :STEP3 <NRf> :STEP4 <NRf> :STEP5 <NRf> :STEP6 <NRf> :STEP7 <NRf>```	Calibration root command.   All commands in this subsystem are protected by the calibration lock (except queries and :CODE).   Calibration code or password (default: KI002790).   Request the number of times the unit has been calibrated.   Initiate calibration.   Lock out calibration (opposite of enabling cal with :CODE command).   Request comprehensive cal lock state. $(0=$ locked; 1 = unlocked).   Save cal constants to EEROM.   Send cal date to Model 2790.   Request cal date from Model 2790.   Send next due cal date to Model 2790.   Request next due cal date from Model 2790.   DC cal steps.   Rear scanner terminals short step ${ }^{1}$.   Front terminal short circuit.   Open circuit.   10V DC step.   -10V DC step.   100V DC step.   $1 \mathrm{k} \Omega 4$-wire step.   $10 \mathrm{k} \Omega 4$-wire step.

Table G-1 (cont.)
Remote calibration command summary

Command	Description
:CALibration	
:PROTected	
:DC	
:STEP8 < NRf $>$	$100 \mathrm{k} \Omega$ 4-wire step.
:STEP9 <NRf>	$1 \mathrm{M} \Omega$ 4-wire step.
:STEP10 <NRf>	$10 \mathrm{~mA} \mathrm{DC} \mathrm{step}$.
:STEP11 <NRf>	$100 \mathrm{~mA} \mathrm{DC} \mathrm{step}$.
:STEP12 <NRf>	1A DC step.
:AC	AC cal steps.
:STEP1	10 mV AC at 1 kHz step.
:STEP2	100 mV AC at 1 kHz step.
:STEP3	100 mV AC at 50 kHz step.
:STEP4	1 V AC at 1 kHz step.
:STEP5	1 V AC at 50 kHz step.
:STEP6	10 V AC at 1 kHz step.
:STEP7	10 V AC at 50 kHz step.
:STEP8	100 V AC at 1 kHz step.
:STEP9	100 V AC at 50 kHz step.
:STEP10	700 V AC at 1 kHz step.
:STEP11	100 mA AC at 1 kHz step.
:STEP12	1 A AC at 1 kHz step.
:STEP13	2 A AC at 1 kHz step.
:STEP14	1 V AC at 10 Hz step ${ }^{1}$.
:STEP15	1 V AC at $1 \mathrm{kHz} \mathrm{step}{ }^{1}$.

NOTE: Uppercase letters indicate short form of each command. For example, instead of sending ":CALibration:PROTected:INITiate," you can send ":CAL:PROT:INIT."
${ }^{1}$ DC:STEP0, AC:STEP14, and AC:STEP15 are one-time factory calibration points and are valid only in manufacturing calibration mode.

Miscellaneous calibration commands

Miscellaneous commands perform various calibration functions such as programming the calibration code and date. These commands are discussed in detail in the following paragraphs.

:CODE

(:CALibration:PROTected:CODE)

Purpose To program the calibration code or password so that you can perform the calibration procedures.
Format :cal:prot:code '<char_string>'

Parameters Up to a 8 -character string including letters and numbers.

Description The : CODE command enables the Model 2790 calibration procedures when performing these procedures over the bus. In general, this command must be sent to the unit before sending any other comprehensive or manufacturing calibration command. The default calibration code is KI002790.

NOTE The : CODE command should be sent only once before performing either the comprehensive or factory calibration. Do not send : CODE before each calibration step.

To change the code, first send the present code, then send the new code.
The code parameter must be enclosed in single quotes.
Example :CAL:PROT:CODE 'KI002790' Send default code of KI002790.

:COUNt?

(:CALibration:PROTected:COUNt?)

Purpose To determine how many times the Model 2790 has been calibrated.
Format :cal:prot:coun?
Response <n> Calibration count.

Description	The : COUNt? command allows you to determine how many times the
	Model 2790 has been calibrated. Use the :COUNt? command to help
you monitor for unauthorized calibration procedures.	

:INIT

(:CALibration:PROTected:INITiate)

Purpose To initiate comprehensive and factory calibration procedures.
Format :cal:prot:init
Parameters None
Description The : INIT command enables Model 2790 calibration when performing these procedures over the bus. This command must be sent to the unit after sending the : CODE command, but before sending any other calibration command.

> NOTE The : INIT command should be sent only once before performing either DC, AC, or factory calibration. Do not send : INIT before each calibration step.

Example :CAL:PROT:INIT Initiate calibration.

:LOCK

(:CALibration:PROTected:LOCK)

Purpose To lock out comprehensive or manufacturing calibration.
Format :cal:prot:lock
Parameters None
Description The : LOCK command allows you to lock out both comprehensive and manufacturing calibration after completing those procedures. Thus, : LOCK performs the opposite of enabling calibration with the :CODE command.

NOTE To unlock comprehensive calibration, send the : CODE command. To unlock manufacturing calibration, hold in the OPEN key while turning on the power.

Example :CAL:PROT:LOCK Lock out calibration.

:LOCK?

(:CALibration:PROTected:LOCK?)

Purpose	To read comprehensive calibration lock status.	
Format	:cal:prot:lock?	
Response	0	Comprehensive calibration locked.
	1	Comprehensive calibration unlocked.

Description The :LOCK? query requests status from the Model 2790 on calibration locked/unlocked state. Calibration must be enabled sending the :CODE command before calibration can be performed.
Example :CAL:PROT:LOCK? Request cal lock state.

(:CALibration:PROTected:SAVE)

Purpose To save calibration constants in EEROM after the calibration procedure.
Format :cal:prot:save
Parameters None
Description The : SAVE command stores internally calculated calibration constants derived during both comprehensive and manufacturing calibration in EEROM. (EEROM is non-volatile memory.) Calibration constants will be retained indefinitely once saved. Generally, : SAVE is sent after all other calibration steps (except for : LOCK).

NOTE Calibration will be only temporary unless the : SAVE command is sent to permanently store calibration constants.

Example :CAL:PROT:SAVE Save calibration constants.

:DATE

(:CALibration:PROTected:DATE)

Purpose	To send the calibration date to the instrument.
Format	:cal:prot:date <yyyy>, <mm>, <dd>
Parameters	$\begin{aligned} & <\text { yyyy }>=2000 \text { to } 2099 \\ & <\mathrm{mm}>=1 \text { to } 12 \\ & <\mathrm{dd}>=1 \text { to } 31 \end{aligned}$
Query	:cal:prot:date?
Response	<yyyy>, <mm>, <dd>
Description	The : DATE command allows you to store the calibration date in instrument memory for future reference. The year, month, and day parameters must be delimited by commas. You can read back the date from the instrument over the bus by using the : DATE? query or the CALIBRATION selection in the front panel CAL menu.
Example	:CAL: PROT:DATE 2002,3,16 Send cal date (3/16/2002). :CAL: PROT:DATE? Request cal date.

:NDUE

:CALibration:PROTected:NDUE)

Purpose To send the next calibration due date to the instrument.
Format :cal:prot:ndue <yyyy>, <mm>, <dd>
Parameters <yyyy>= 2000 to 2099
$<\mathrm{mm}>=1$ to 12
$<d d>=1$ to 31
Query :cal:prot:ndue?
Response <yyyy>, <mm>, <dd>
Description The : NDUE command allows you to store the date when calibration is next due in instrument memory. The next due date parameters must be delimited by commas. You can read back the next due date from the instrument over the bus by using the : NDUE? query or the front panel CAL menu.

Example	:CAL: PROT $:$ NDUE 2003,3,16	Send due date (3/16/2003).
	$:$ CAL : PROT $:$ NDUE?	Request due date.

DC calibration commands

The : DC commands perform calibration of the DCV, DCI, and ohms functions. Table G-2 summarizes these calibration commands along with parameter limits.

Table G-2
DC calibration commands

Command	Description	Parameter limits
	Front terminal short circuit. Open circuit. 10V DC calibration step. -10V DC calibration step. 100V DC calibration step. $1 \mathrm{k} \Omega 4$-wire calibration step. $10 \mathrm{k} \Omega 4$-wire calibration step. $100 \mathrm{k} \Omega 4$-wire calibration step. $1 \mathrm{M} \Omega 4$-wire calibration step. 10 mA DC calibration step. 100 mA DC calibration step. 1A DC calibration step.	9 to 11 -9 to -11 90 to 110 0.9 E 3 to 1.1 E 3 9 E 3 to 11 E 3 90E3 to 110E3 900 E 3 to 1.1 E 6 $9 \mathrm{E}-3$ to $11 \mathrm{E}-3$ $90 \mathrm{E}-3$ to $110 \mathrm{E}-3$ 0.9 to 1.1

:STEP1

(:CALibration:PROTected:DC:STEP1)

Purpose To perform front terminal short-circuit calibration.
Format :cal:prot:dc:step1
Parameters None
Description : STEP1 performs the short-circuit calibration step in the comprehensive calibration procedure. Connect a low-thermal short (Model 8610) to the front panel input jacks before sending this command.
Example :CAL:PROT:DC:STEP1 Perform short-circuit calibration.

:STEP2

(:CALibration:PROTected:DC:STEP2)

Purpose	To perform front terminal open-circuit calibration.
Format	$: c a l:$ prot:dc:step2
Parameters	None
Description	:STEP2 performs the open-circuit calibration step in the comprehen- sive calibration procedure. Disconnect all cables and accessories from the input jacks before sending this command.
Example	:CAL:PROT:DC:STEP2 Perform open circuit calibration.

:STEP3

(:CALibration:PROTected:DC:STEP3)

Purpose	To program the +10 V comprehensive calibration step.
Format	:cal:prot:dc:step3 <Cal_voltage>
Parameters	<Cal_voltage> $=9$ to 11 [V]
Description	: STEP3 programs the +10 V DC comprehensive calibration step. The allowable range of the calibration voltage parameter is from 9 to 11 , but 10 is recommended for best results.
Example	:CAL:PROT:DC:STEP3 10 Program 10V step.

:STEP4

(:CALibration:PROTected:DC:STEP4)

Purpose	To program the -10V DC comprehensive calibration step.
Format	:cal:prot:dc:step4 <Cal_voltage>
Parameters	<Cal_voltage> =-9 to $-11[\mathrm{~V}]$
Description	:STEP4 programs the -10 V DC comprehensive calibration step. The allowable range of the calibration voltage parameter is from -9 to -11, but -10 is recommended for best results.
Example	:CAL:PROT:DC:STEP4 -10 Program -10V step.

:STEP5

(:CALibration:PROTected:DC:STEP5)

Purpose	To program the 100 V DC comprehensive calibration step.
Format	:cal:prot:dc:step5 <Cal_voltage>
Parameters	<Cal_voltage> $=90$ to $110[\mathrm{~V}]$
Description	: STEP5 programs the 100 V DC comprehensive calibration step. The allowable range of the calibration voltage parameter is from 90 to 110, but 100 is recommended for best results.
Example	:CAL:PROT:DC:STEP5 $100 \quad$ Program 100V step.

:STEP6

(:CALibration:PROTected:DC:STEP6)

Purpose To program the $1 \mathrm{k} \Omega 4$-wire comprehensive calibration step.
Format :cal:prot:dc:step6 <Cal_resistance>
Parameters <Cal_resistance> $=0.9 \mathrm{E} 3$ to $1.1 \mathrm{E} 3[\Omega]$
Description : STEP6 programs the $1 \mathrm{k} \Omega 4$-wire resistance comprehensive calibration step. The allowable range of the calibration resistance parameter is from 0.9 E 3 to 1.1 E 3 , but 1 E 3 is recommended for best results.

Example :CAL:PROT:DC:STEP6 1E3 Program $1 \mathrm{k} \Omega$ step.

:STEP7

(:CALibration:PROTected:DC:STEP7)

Purpose	To program the $10 \mathrm{k} \Omega 4$-wire comprehensive calibration step.
Format	:cal:prot:dc:step7 <Cal_resistance>
Parameters	<Cal_resistance> $=9 \mathrm{E} 3$ to $11 \mathrm{E} 3[\Omega]$
Description	:STEP7 programs the $10 \mathrm{k} \Omega 4$-wire resistance comprehensive calibra- tion step. The allowable range of the calibration resistance parameter is from 9E3 to 11E3, but 10E3 is recommended for best results.
Example	$:$ CAL: PROT:DC:STEP7 10E3 Program 10k Ω step.

:STEP8

(:CALibration:PROTected:DC:STEP8)

Purpose	To program the $100 \mathrm{k} \Omega 4$-wire comprehensive calibration step.
Format	:cal:prot:dc:step8 <Cal_resistance>
Parameters	<Cal_resistance> = 90E3 to 110E3 [$\Omega]$
Description	:STEP8 programs the $100 \mathrm{k} \Omega$ tion step. The allowable range of the calibration resistance parameter is from 90E3 to 110E3, but 100E3 is recommended for best results.
Example	$:$ CAL: PROT:DC:STEP8 100E3 Program 100k Ω step.

:STEP9

(:CALibration:PROTected:DC:STEP9)

Purpose	To program the $1 \mathrm{M} \Omega$ comprehensive calibration step.
Format	:cal:prot:dc:step9 <Cal_resistance>
Parameters	<Cal_resistance> $=900 \mathrm{E} 3$ to $1.1 \mathrm{E} 6[\Omega]$
Description	:STEP9 programs the $1 \mathrm{M} \Omega$ comprehensive calibration step. The allow- able range of the calibration resistance parameter is from 900 E 3 to
	1.1E6. Use the 1 E 6 value whenever possible or the closest possible value.
Example	:CAL: PROT:DC:STEP9 1E6 Program $1 \mathrm{M} \Omega$ calibration step.

:STEP10

(:CALibration:PROTected:DC:STEP10)
Purpose To program the 10 mA comprehensive calibration step.
Format :cal:prot:dc:step10 <Cal_current>
Parameters <Cal_current> = 9E-3 to 11E-3 [A]
$\left.\begin{array}{ll}\text { Description } & \text { :STEP10 programs the } 10 \mathrm{~mA} \text { comprehensive calibration step. The } \\ \text { allowable range of the calibration current parameter is from } 9 \mathrm{E}-3 \text { to }\end{array}\right\}$

:STEP11

(:CALibration:PROTected:DC:STEP11)

Purpose	To program the 100 mA comprehensive calibration step.
Format	:cal:prot:dc:step11 <Cal_current>
Parameters	<Cal_current> = 90E-3 to 110E-3 [A]
Description	:STEP11 programs the 100 mA comprehensive calibration step. The allowable range of the calibration current parameter is from $90 \mathrm{E}-3$ to
	$110 \mathrm{E}-3$. Use the $100 \mathrm{E}-3$ value whenever possible for best results.

:STEP12

(:CALibration:PROTected:DC:STEP12)

Purpose To program the 1A comprehensive calibration step.
Format :cal:prot:dc:step12 <Cal_current>
Parameters <Cal_current> $=0.9$ to $1.1[\mathrm{~A}]$
Description : STEP 12 programs the 1 A comprehensive calibration step. The allowable range of the calibration current parameter is from 0.9 to 1.1 . Use a value of 1 whenever possible for best results.
Example :CAL:PROT:DC:STEP12 1 Program 1A step.

AC calibration commands

The :AC commands perform comprehensive (user) calibration of the ACV and ACI functions. Table G-3 summarizes these calibration commands.

Table G-3
AC calibration commands

Command	Description
$:$ CALibration	
$:$ PROTected	
$:$ AC	
$:$ STEP1	10 mV AC at 1 kHz calibration step.
$:$ STEP2	100 mV AC at 1 kHz calibration step.
$:$ STEP3	100 mV AC at 50 kHz calibration step.
$:$ STEP4	1 V AC at 1 kHz calibration step.
$:$ STEP5	1 V AC at 50 kHz calibration step.
$:$ STEP6	10 V AC at 1 kHz calibration step.
$:$ STEP7	10 V AC at 50 kHz calibration step.
$:$ STEP8	100 V AC at 1 kHz calibration step.
$:$ STEP9	100 V AC at 50 kHz calibration step.
$:$ STEP10	700 V AC at 1 kHz calibration step.
$:$ STEP11	100 mA AC at 1 kHz calibration step.
$:$ STEP12	1 A AC at 1 kHz calibration step.
$:$ STEP13	2 A AC at 1 kHz calibration step.

:AC:STEP<n>

(CALibration:PROTected:AC:STEP<n>)

Purpose	To program individual AC calibration steps.
Format	:cal:prot:ac:step<n>
Parameters	$1 \quad 10 \mathrm{mV}$ AC at 1 kHz calibration step.
	2100 mV AC at 1 kHZ calibration step.
	100 mV AC at 50 kHz calibration step
	$4 \quad 1 \mathrm{~V}$ AC at 1 kHz calibration step.
	51 V AC at 50 kHz calibration step.
	$6 \quad 10 \mathrm{~V}$ AC at 1 kHz calibration step.
	$7 \quad 10 \mathrm{~V}$ AC at 50 kHz calibration step.
	$8 \quad 100 \mathrm{~V} \mathrm{AC}$ at 1 kHz calibration step.
	9100 V AC at 50 khz calibration step.
	10700 V AC at 1 kHz calibration step.
	11100 mA AC at 1 kHz calibration step.
	121 A AC at 1 kHz calibration step.
	132 A AC at 1 kHz calibration step.

Description The :AC:STEP command programs the 13 individual AC calibration steps; <n> represents the calibration step number. The appropriate signal must be connected to the instrument when programming each step, as summarized in the parameters listed above.

Example

:CAL:PROT:AC:STEP7
Program 10V, 50 kHz step.

Manufacturing calibration commands

Three calibration steps are only performed at the factory or when the unit has been repaired:
:CALibration:PROTected:AC:STEP14
:CALibration:PROTected:AC:STEP15
:CALibration:PROTected:DC:STEP0

1 V AC at 10 Hz 1 V AC at 1 kHz
Rear scanner terminal short circuit

:AC:STEP<14|15>

(CALibration:PROTected:AC:STEP<14|15>)

Purpose	To program individual AC manufacturing calibration steps.
Format	:cal:prot:ac:step14 <Cal_voltage> :cal:prot:ac:step15 <Cal_frequency>
Parameters	$\begin{aligned} & \text { <Cal_voltage> = } 1 \text { [1V nominal] } \\ & \text { <Cal_frequency = } 1 \mathrm{E} 3 \text { [1 kHz nominal }] \end{aligned}$
Description	The :AC:STEP14 and :AC:STEP:15 commands program the two manufacturing AC calibration steps. The appropriate signal must be connected to the instrument when programming each step, as summarized by the parameters listed above.
Example	:CAL:PROT:AC:STEP14 1 Program AC step 14. :CAL:PROT:AC:STEP15 1E3 Program AC step 15.

:DC:STEP0

(:CALibration:PROTected:DC:STEP0)

Purpose To perform rear scanner terminal short-circuit calibration.

Format :cal:prot:dc:step0
Parameters None
Description : STEP0 performs the rear scanner terminal short-circuit calibration step in the manufacturing calibration procedure. Install an extender card with low-thermal shorts on the output terminals installed in Slot 1 and select the rear scanner inputs before sending this command.
Example :CAL:PROT:DC:STEPO Perform rear short-circuit calibration.

Model 7751, 7752, and 7753 calibration commands

Table G-4 summarizes calibration commands for the Model 7751, 7752, and 7753 plug-in modules. Note that CARD1 commands calibrate the card in Slot 1, while CARD2 commands request calibration count and date information from a card in Slot 2.

> NOTE A Model 7751/7752/7753 must be installed in Slot 1 to be calibrated. See "Model 7751, 7752, and 7753 calibration" in Section 17.

Table G-4

Model 7751/7752/7753 calibration commands

Command	Description
```:CALibration :PROTected :CODE '<up to 8 char. string>' :CARD1 :INITiate :COUNt? :RCOunt :DATE? :SAVE :LOCK :LOCK? :ISOurce :STEP0 :STEP1 :DATA <NRf>, <NRf> :DATA? :CARD2 :COUNt? :DATE?```	Calibration root command.   All commands in this subsystem are protected by the calibration lock (except queries and :CODE).   Send calibration code. (Default KI002790.)   Path to calibrate card in slot 1.   Initiate card calibration.   Request number of times card in slot 1 has been calibrated.   Reset card calibration count to 0 .   Request card cal. date.   Save cal constants to card EEPROM.   Lock out calibration.   Request cal lock state. ( $0=$ locked, $1=$ unlocked.)   Path to Model 7751/7752/7753 current source commands.   Turn on current source low calibration point ( 1 mA ).   Turn on voltage source high calibration point ( 50 mA ).   Send two DMM readings for low and high calibration points.   Return comma-delimited calibrations constants.   Path to request calibration information from card in slot 2 .   Request number of times card in slot 2 has been calibrated.   Request card calibration date.

## :CODE

## (:CALibration:PROTected:CODE)

Purpose	To program the calibration code or password so that you can perform the   Model 7751/7752/7753 calibration procedures.
Format	:cal: prot:code '<char_string> '

NOTES The : CODE command should be sent only once before performing calibration. Do not send : CODE before each calibration step.

The code parameter must be enclosed in single quotes.
Example :CAL:PROT:CODE 'KI002790' Send default code of KI002790.

## :COUNt?

## (:CALibration:PROTected:CARD1:COUNt? (:CALibration:PROTected:CARD2:COUNt?

Purpose $\quad$ To determine how many times a Model 7751/7752/7753 has been calibrated.

Format	:cal:prot:card1:coun?   :cal:prot:card2:coun?
Response	<n> Calibration count.
Description	The : CARD1:COUNt? and :CARD2:COUNt? commands allow you to determine how many times a Model 7751/7752/7753 in Slot 1 or Slot 2 has been calibrated.

NOTE Use the : COUNt? command to help you monitor for unauthorized calibration
procedures.
Example :CAL:PROT:CARD1:COUN? Request card 1 calibration count.

## :DATE?

## (:CALibration:PROTected:CARD1:DATE? (:CALibration:PROTected:CARD2:DATE?

Purpose To request the Model 7751/7752/7753 calibration date.
Format :cal:prot:card1:date?

Response <yyyy>, <mm>, <dd>

Description	The CARD1: DATE? and CARD2 : DATE? queries allow you to read back   the calibration date from a Model 7751/7752/7753 in Slot 1 or Slot 2,
	respectively.


NOTE	The card calibration date is automatically set to the Model 2790 real-time clock

Example :CAL:PROT:CARD1:DATE? 1 Request card 1 cal date.

## (:CALibration:PROTected:CARD1:INITiate)

Purpose To initiate Model 7751/7752/7753 calibration procedures.
Format :cal:prot:card1:init
Parameters None
Description The :INIT command enables Model 7751/7752/7753 calibration when performing these procedures over the bus. This command must be sent to the unit after sending the : CODE command, but before performing Model 7751/7752/7753 calibration.
Example :CAL:PROT:CARD1:INIT Initiate calibration.

## :LOCK

(:CALibration:PROTected:CARD1:LOCK)

Purpose	To lock out Model 7751/7752/7753 calibration.
Format	$:$ cal:prot:card1:lock
Parameters	None
Description	The $:$ LOCK command allows you to lock out Model $7751 / 7752 / 7753$   calibration after completing the procedure. Thus, $:$ LOCK performs the   opposite of enabling calibration with the $:$ CODE command.
Example	:CAL: PROT:CARD1:LOCK $\quad$ Lock out card 1 calibration.

## :LOCK?

## (:CALibration:PROTected:CARD1:LOCK?)

Purpose	To read Model 7751/7752/7753 calibration lock status.
Format	:cal:prot:card1:lock?
Response	0 Calibration locked.
Description	1 Calibration unlocked.
	The $:$ LOCK? query requests status from the Model 2790 on   Model 7751/7752/7753 calibration locked/unlocked state. Calibration   must be enabled sending the :CODE command before calibration can   be performed.
Example	:CAL: PROT:CARD1:LOCK? $\quad$ Request card 1 cal lock state.

## :RCOunt

(:CALibration:PROTected:CARD1:RCOunt)
Purpose To reset card calibration count to 0 .
Format :cal:prot:card1:rco
Parameters None
Description The : RCOunt command resets the card calibration count reported by : COUNt? to 0.

Example :CAL:PROT:CARD1:RCO Reset card calibration count.

## Current source calibration commands

(:CALibration:PROTected:CARD1:ISOurce:STEP0)
(:CALibration:PROTected:CARD1:ISOurce:STEP1) (:CALibration:PROTected:CARD1:ISOurce:DATA <NRf〉, <NRf§)
$\left.\begin{array}{ll}\text { Purpose } & \text { To calibrate the Model 7751/7752/7753 current source. } \\ \text { Format } & \text { :cal:prot:card1:iso:step0 } \\ \text { :cal:prot:card1:iso:step1 } \\ \text { :cal:prot:card1:iso:data <low>, <high> }\end{array}\right\}$

## :DATA?

## (:CALibration:PROTected:CARD1:DATA?

Purpose To request the Model 7751/7752/7753 calibration constants.
Format :cal:prot:card1:data?
Response Calibration constants in comma-delimited ASCII format.

Description	: DATA? returns comma-delimited card cal constants. For a
	Model $7751 / 7753$ card, the amps cal constants are returned first,
followed by the Vsource cal constants. A number of zeroes are also	
returned; these may be ignored as they are simply placeholders within	
the cal constant data structure for possible future expansion.	

Example :CAL:PROT:CARD1:DATA? Request cal constants data.

## :SAVE

## (:CALibration:PROTected:CARD1:SAVE)

Purpose	To save calibration constants in card EEROM after the calibration   procedure.		
Format	:cal: prot :card1:save		
Parameters	None	Description	The :SAVE command stores calculated calibration constants derived
:---			
during Model 7751/7752/7753 calibration in card EEROM. (EEROM is			
non-volatile memory.) Calibration constants will be retained indefinitely			
once saved. Generally, : SAVE is sent after all other calibration steps			
(except for :LOCK).			

NOTE Card calibration will be only temporary unless the : SAVE command is sent to permanently store calibration constants.

Example :CAL:PROT:CARD1:SAVE Save card calibration constants.

## Remote error reporting

Methods to detect and determine the nature of calibration errors are discussed in the following paragraphs.

## Error summary

Table G-5 summarizes Model 2790 calibration errors, including error numbers and error messages.

NOTE Error numbers and error messages are separated by commas. All calibration errors will set Bit 2 in the Standard Event Register. See Section 11.

Table G-5
Calibration errors

Error number	Error message
+400	"10 vdc zero error"
+401	"100 vdc zero error"
+402	"10 vdc full scale error"
+403	"-10 vdc full scale error"
+404	"100 vdc full scale error"
+405	"-100 vdc full scale error"
+406	"1k 2-w zero error"
+407	"10k 2-w zero error"
+408	"100k 2-w zero error"
+409	"10M 2-w zero error"
+410	"10M 2-w full scale error"
+411	"10M 2-w open error"
+412	"1k 4-w zero error"
+413	"10k 4-w zero error"
+414	"100k 4-w zero error"
+415	"10M 4-w sense lo zero error"
+416	"1k 4-w full scale error"
+417	"10k 4-w full scale error"
+418	"100k 4-w full scale error"
+419	"1M 4-w full scale error"
+420	"10M 4-w full scale error"
+421	"10m adc zero error"
+422	"100m adc zero error"
+423	"10m adc full scale error"
+424	" 100 m adc full scale error"

Table G-5 (cont.)

## Calibration errors

Error number	Error message
+425	"1 adc full scale error"
+438	"Date of calibration not set"
+439	"Next date of calibration not set"
+450	" 100 m vac dac error"
+451	"1 vac dac error"
+452	"10 vac dac error"
+453	"100 vac dac error"
+454	"100m vac zero error"
+455	" 100 m vac full scale error"
+456	"1 vac zero error"
+457	"1 vac full scale error"
+458	"1 vac noise error"
+459	"10 vac zero error"
+460	"10 vac full scale error"
+461	"10 vac noise error"
+462	"100 vac zero error"
+463	"100 vac full scale error"
+464	"750 vac zero error"
+465	"750 vac full scale error"
+466	"750 vac noise error"
+467	"Post filter offset error"
+468	"1 aac zero error"
+469	"1 aac full scale error"
+470	" 3 aac zero error"
+471	"3 aac full scale error"
+472	"1V 10Hz amplitude error"
+473	"Frequency gain error"
+474	"1K Ohm Ioff Ocomp FS error"
+475	"10K Ohm Ioff Ocomp FS error"
+499	"1V 10Hz frequency error"
+500	"Calibration data invalid"
+513	"AC calibration data lost"
+514	"DC calibration data lost"
+515	"Calibration dates lost"
+518	"Card calibration data lost"
+519	"Card calibration dates lost"
+610	"Questionable calibration"

## Error queue

As with other Model 2790 errors, any calibration error will be reported in the bus error queue. You can read this queue by using the :SYST:ERR? query. The Model 2790 will respond with the appropriate error number and message, as summarized in Table G-5.

## Status byte EAV (Error Available) bit

Whenever an error is available in the error queue, the EAV (Error Available) bit (bit 2) of the status byte will be set. Use the *STB? query or serial polling to obtain the status byte, then test bit 2 to see if it is set. If the EAV bit is set, an error has occurred and you can use the :SYST:ERR? query to read the error and at the same time clear the EAV bit in the status byte. Bit 3 of the Standard Event Register will also be set by a calibration error.

## Generating an SRQ on error

To program the instrument to generate an IEEE-488 bus SRQ when an error occurs, send the following command: *SRE 4. This command will enable SRQ when the EAV bit is set. You can then read the status byte and error queue as outlined above to check for errors and to determine the exact nature of the error.

## Detecting calibration step completion

When sending remote calibration commands, you must wait until the instrument completes the current operation before sending a command. You can use either *OPC? or *OPC to help determine when each calibration step is completed.

## Using the *OPC? query

With the *OPC? (operation complete) query, the instrument will place an ASCII 1 in the output queue when it has completed each step. To determine when the OPC response is ready, do the following:

1. Repeatedly test the MAV (Message Available) bit (bit 4) in the status byte and wait until it is set. (You can request the status byte by using the *STB? query or by serial polling.)
2. When MAV is set, a message is available in the output queue and you can read the output queue and test for an ASCII 1.
3. After reading the output queue, repeatedly test MAV again until it clears. At this point, the calibration step is completed.

## Using the *OPC command

The *OPC (operation complete) command can also be used to detect the completion of each calibration step. To use *OPC to detect the end of each calibration step, you must do the following:

1. Enable operation complete by sending *ESE 1. This command sets the OPC (operation complete bit) in the standard event enable register, allowing operation complete status from the standard event status register to set the ESB (event summary bit) in the status byte when operation complete is detected.
2. Send the *OPC command immediately following each calibration command. For example:
:CAL:PROT:DC:STEP1;*OPC
Note that you must include the semicolon (;) to separate the two commands and that the *OPC command must appear on the same line as the calibration command.
3. After sending a calibration command, repeatedly test the ESB (Event Summary) bit (bit 5) in the status byte until it is set. (Use either the *STB? query or serial polling to request the status byte.)
4. Once operation complete has been detected, clear OPC status using one of two methods: (1) Use the *ESR? query, then read the response to clear the standard event status register or (2) send the *CLS command to clear the status registers. Note that sending *CLS will also clear the error queue and operation complete status.

## Generating an SRQ on calibration complete

An IEEE-488 bus SRQ (service request) can be used to detect operation complete instead of repeatedly polling the Model 2790. To use this method, send both *ESE 1 and *SRE 32 to the instrument, then include the *OPC command at the end of each calibration command line, as covered above. Refer to your controller's documentation for information on detecting and servicing SRQs.

## Calibration program

The following calibration program is written in BASIC to help you calibrate the Model 2790. Refer to Section 17 for more details on calibration procedures, equipment, and connections.

## Computer hardware requirements

The following computer hardware is required to run the calibration program:

- IBM PC, AT, or compatible computer.
- Keithley KPC-488.2, KPS-488.2, KPC-488.2AT, or CEC PC-488 IEEE-488 interface for the computer.
- Two shielded IEEE-488 connecting cables (Keithley Model 7007).


## Software requirements

In order to use the calibration program, you will need the following software:

- Microsoft QBasic (supplied with MS-DOS 5.0 or later).
- MS-DOS version 5.0 or later.
- HP-style Universal Language Driver, CECHP.EXE (supplied with Keithley and CEC interface cards listed above).


## Calibration equipment

The following calibration equipment is required:

- Fluke 5700A Calibrator
- Keithley Model 8610 Calibration Short
- Double banana plug to BNC cables

See Section 17 for detailed equipment information and refer to these figures for connections:

- Low-thermal short connections: Figure 17-1
- DC volts and ohms connections: Figure 17-2
- DC and AC amps connections: Figure 17-3
- AC volts connections: Figure 17-4


## General program instructions

1. With the power off, connect the Model 2790 and the calibrator to the IEEE-488 interface of the computer. Be sure to use shielded IEEE-488 cables for bus connections.
2. Turn on the computer, the Model 2790, and the calibrator. Allow the Model 2790 and the calibrator to warm up for at least two hours before performing calibration.
3. Make sure the Model 2790 is set for a primary address of 16 . (Use the front panel GPIB key to check or change the address.)
4. Make sure the calibrator primary address is at its factory default setting of 4 .
5. Make sure that the computer bus driver software (CECHP.EXE) is properly initialized.
6. Enter the QBasic editor and type in the program below. Check thoroughly for errors, then save it using a convenient filename.

NOTE The program assumes a default calibration code of KI002790. If the calibration code has been changed, modify the :CAL:PROT:CODE parameter accordingly.
7. Run the program and follow the prompts on the screen to perform calibration.

Program G-1

## Model 2790 calibration program

' Model 2790 calibration program.
' Rev. 1.0, 2/15/2002
OPEN "IEEE" FOR OUTPUT AS \#1 ' Open IEEE-488 output path.
OPEN "IEEE" FOR INPUT AS \#2 ' Open IEEE-488 input path.
PRINT \#1, "INTERM CRLF" ' Set input terminator.
PRINT \#1, "OUTTERM LF" ' Set output terminator.
PRINT \#1, "REMOTE 4 16" ' Put 2790, 5700A in remote.
PRINT \#1, "CLEAR" ' Send DCL.
PRINT \#1, "OUTPUT 16;:SYST:PRES;*CLS" ' Initialize 2790.
PRINT \#1, "OUTPUT 16;*ESE 1;*SRE 32" ' Enable OPC and SRQ.
PRINT \#1, "OUTPUT 4;*RST;*CLS;STBY" ' Reset 5700A calibrator.
PRINT \#1, "OUTPUT 4;CUR_POST NORMAL" ' Normal current output.
C\$ = ":CAL:PROT:"
2790 partial command header.

CLS ' Clear CRT.
PRINT "Model 2790 Multimeter Comprehensive Calibration Program"
PRINT \#1, "OUTPUT 16;:CAL:PROT:CODE 'KIO02790'" ' Send KIO02790 cal code.
PRINT \#1, "OUTPUT 16;:CAL:PROT:INIT" ' Initiate calibration.
GOSUB ErrCheck
RESTORE CmdList

```
FOR I = 1 TO 25 ' Loop for all cal points.
```

READ Msg\$, Cmd\$ ' Read message, cal strings.
SELECT CASE I
' Select cal sequence.

CASE 1, 2
PRINT Msg\$
GOSUB KeyCheck
CASE 3
PRINT "Connect calibrator to INPUT and SENSE jacks."
PRINT "Wait 3 minutes."
GOSUB KeyCheck
PRINT \#1, "OUTPUT 4;EXTSENSE OFF"
PRINT \#1, "OUTPUT 4;"; Msg\$
PRINT \#1, "OUTPUT 4;OPER"
CASE 4, 5, 11, 12, 14 TO 22, 24, 25
PRINT \#1, "OUTPUT 4;"; Msg\$
PRINT \#1, "OUTPUT 4;OPER"
CASE 6 TO 9
PRINT \#1, "OUTPUT 4;"; Msg\$
PRINT \#1, "OUTPUT 4;EXTSENSE ON"
PRINT \#1, "OUTPUT 4;OPER"
PRINT \#1, "OUTPUT 4;OUT?"
PRINT \#1, "ENTER 4"
INPUT \#2, R, R\$, s
Cmd\$ = Cmd\$ + " " + STR\$(R)

```
CASE 10, 13, 23
 J$ = "AMPS"
 IF I = 13 THEN J$ = "INPUT HI"
 PRINT #1, "OUTPUT 4;STBY"
 PRINT "Connect calibrator to "; J$; " and INPUT LO jacks."
 GOSUB KeyCheck
 PRINT #1, "OUTPUT 4;"; Msg$
 PRINT #1, "OUTPUT 4;OPER"
END SELECT
IF I > 2 THEN GOSUB Settle
PRINT #1, "OUTPUT 16;"; C$; Cmd$; ";*OPC" ' Send cal command to 2790.
GOSUB CalEnd ' Wait until cal step ends.
GOSUB ErrCheck ' Check for cal error.
NEXT I
PRINT #1, "OUTPUT 4;STBY"
LINE INPUT "Enter calibration date (yyyy,mm,dd): "; D$
PRINT #1, "OUTPUT 16;:CAL:PROT:DATE"; D$
GOSUB ErrCheck
LINE INPUT "Enter calibration due date (yyyy,mm,dd): "; D$
PRINT #1, "OUTPUT 16;:CAL:PROT:NDUE"; D$
GOSUB ErrCheck
PRINT #1, "OUTPUT 16;:CAL:PROT:SAVE" ' Save calibration constants.
GOSUB ErrCheck
PRINT #1, "OUTPUT 16;:CAL:PROT:LOCK" ' Lock out calibration.
PRINT "Calibration completed."
PRINT #1, "OUTPUT 16;:SYST:PRES"
END
KeyCheck: ' Check for key press routine.
WHILE INKEY$ <> "": WEND ' Flush keyboard buffer.
PRINT : PRINT "Press any key to continue (ESC to abort program)."
DO: I$ = INKEY$: LOOP WHILE I$ = ""
IF I$ = CHR$(27) THEN GOTO EndProg ' Abort if ESC is pressed.
RETURN
CalEnd: ' Check for cal step completion.
PRINT "Performing calibration step #"; I
DO: PRINT #1, "SRQ?" ' Request SRQ status.
INPUT #2, s ' Input SRQ status byte.
LOOP UNTIL s ' Wait for operation complete.
PRINT #1, "OUTPUT 16;*ESR?" ' Clear OPC.
PRINT #1, "ENTER 16"
INPUT #2, s
PRINT #1, "SPOLL 16" ' Clear SRQ.
INPUT #2, s
RETURN
ErrCheck: ' Error check routine.
PRINT #1, "OUTPUT 16;:SYST:ERR?" ' Query error queue.
PRINT #1, "ENTER 16"
INPUT #2, E, Err$
IF E <> O THEN PRINT Err$: GOTO ErrCheck ' Display error.
RETURN
```

```
Settle: ' Calibrator settling routine.
DO: PRINT #1, "OUTPUT 4;ISR?" ' Query status register.
PRINT #1, "ENTER 4"
INPUT #2, s
LOOP UNTIL (s AND &H1000) ' Test settle bit.
RETURN
EndProg: ' Close files, end program.
BEEP: PRINT "Calibration aborted."
PRINT #1, "OUTPUT 4;STBY"
PRINT #1, "OUTPUT 16;:SYST:PRES"
PRINT #1, "LOCAL 4 16"
CLOSE
END
CmdList:
DATA "Connect low-thermal short to inputs, wait 3 minutes.","DC:STEP1"
DATA "Disconnect low-thermal short from inputs.","DC:STEP2"
DATA "OUT 10 v,O HZ","DC:STEP3 10"
DATA "OUT -10 V","DC:STEP4 -10"
DATA "OUT 100 v","DC:STEP5 100"
DATA "OUT 1 KOHM","DC:STEP6"
DATA "OUT 10 KOHM","DC:STEP7"
DATA "OUT 100 KOHM","DC:STEP8"
DATA "OUT 1 MOHM","DC:STEP9"
DATA "OUT 10 MA","DC:STEP10 10E-3"
DATA "OUT 100 MA","DC:STEP11 100E-3"
DATA "OUT 1A","DC:STEP12 1"
DATA "OUT 10 MV,1 KHZ","AC:STEP1"
DATA "OUT 100 MV,1 KHZ","AC:STEP2"
DATA "OUT 100 MV,50 KHZ","AC:STEP3"
DATA "OUT 1 V,1 KHZ","AC:STEP4"
DATA "OUT 1 V,50 KHZ","AC:STEP5"
DATA "OUT 10 V,1 KHZ","AC:STEP6"
DATA "OUT 10 V,50 KHZ","AC:STEP7"
DATA "OUT 100 v,1 KHZ","AC:STEP8"
DATA "OUT 100 V,50 KHZ","AC:STEP9"
DATA "OUT 700 V,1 KHZ","AC:STEP10"
DATA "OUT 100 MA,1 KHZ","AC:STEP11"
DATA "OUT 1 A,1 KHZ","AC:STEP12"
DATA "OUT 2 A,1 KHZ","AC:STEP13"
```


## Index

## Symbols

*OPC command G-25
*OPC? query G-24
SCPI signal oriented measurement commands MEASure:<function>? [<rang>], [<res>], 13-8
$\Omega$ symbol 5-16
$\Omega 2$ and $\Omega 4$ connections for front panel inputs 3-17
$\Omega 2$ and $\Omega 4$ connections for Model 7702 switching module 3-18

## Numerics

2-wire functions 2-7
4 -wire functions 2-8
4-wire RTDs 3-22
Connections 3-24
Temperature measurement configuration 3-25

## 7702 3-6

7751 and 7752 switching modules 2-31
schematic 2-32
Switching module capabilities 2-31
A
AC calibration commands G-13
AC current verifying, Model 2790 16-13
AC voltage
verifying, Model 2790 16-10
verifying, Model 7702 16-20
AC voltage offset 3-13
Accessories 1-3
ACV (crest factor) 3-12
Adapters 1-4
AMPS fuse replacement (front panel AMPS input) 3-16
Amps measurement procedure 3-15
Annunciators 1-10
Flashing CHAN 7-15
Flashing OCOMP 3-21
LSTN 10-10
REM 10-9
SRQ 10-10
TALK 10-10
Aperture 4-12
Application — sorting resistors 9-16
Applications
Sorting resistors 9-16
ASCII data format 14-3
Auto delay settings 8-4
Auto ranging 4-3, 4-5
Autozero 3-4, 10-2

## B

Bandwidth 4-1, 4-10
Aperture 4-12
Commands 4-10
Programming examples 4-12
Rate conflict error 4-12
Remote programming 4-10
Scanning 4-10
Settings 4-9
Basic measurements 3-7
Basic operation 3-1
Overview 3-2
battery
replacement 18-8
Baud rate 10-17
Beeper control 8-7
Buffer 6-1, 7-27
Auto clear 6-2
Clear 6-11
Commands 6-8
CALCulate2:DATA? 6-14
CALCulate2:FORMat 6-14
CALCulate2:IMMediate 6-14
CALCulate2:IMMediate? 6-14
CALCulate2:STATe 6-14
FORMat:ELEMents 6-13
SYSTem:DATE 6-10
SYSTem:TIME 6-10
TRACe:CLEar 6-10
TRACe:CLEar:AUTO 6-10
TRACe:DATA:SELected? <start>, <count> 6-12
TRACe:DATA? 6-11
TRACe:FEED 6-11
TRACe:FEED:CONTrol 6-11
TRACe:FREE? 6-10
TRACe:NEXT? 6-12
TRACe:NOTify 6-12
TRACe:POINts 6-11
Front panel 6-2
Overview 6-2
Programming example 6-14
Remote programming 6-8
Standard deviation 6-8
Statistics 6-7
Wrap around buffer 6-11
Bus lines F-4
Bus management lines F-5
Data lines F-4
Handshake lines F-5

C
Cables 1-4
Leakage 3-19
Calibration 17-1
calibration
aborting 17-6
AC current 17-13
AC voltage 17-12
code 17-4
comprehensive 17-5
considerations 17-3
cycle 17-5
DC current 17-10
DC volts 17-8
front panel 17-6
front panel short and open 17-7
Model 7751 and 7752 17-26
Model 7751/7752 17-27
preparing the Model 2790 17-6
recommended equipment 17-5
resistance 17-10
setting dates and saving 17-13
step completion G-24
calibration code
front panel 17-4
remote 17-4
calibration commands
AC G-13
DC G-8
manufacturing G-15
miscellaneous G-4
Model 7751 and 7752 G-16
Calibration Program
Calibration equipment G-26
Computer hardware requirements G-26
General instructions G-27
Software requirements G-26
calibration program
Model 2790 G-28
Calibration Reference G-1
CARD menu 2-26
CARD: CONFIG 2-26
CARD: VIEW 2-27
Tree 2-27
Carrying case 1-4
channel
multiple 2-13
System channel operation 2-7
viewing closed 2-26

Channel average 5-18
Basic operation 5-19
Commands 5-21
Delay 5-21
Enabling/disabling 5-21
Programming examples 5-22
Remote programming 5-21
Scanning 5-20
channel average (7702 only) 5-18
Channel list parameter (<clist>) 3-6
Channel scan list parameter (7702 only) 3-6
Channels
Assignments 2-6, 7-2, 7-3
Auto channel configuration 7-20
Average see Channel average
Closing and opening 1-27, 2-1
Monitor 7-18
Multiple see Multiple channels
Numbering 2-6
Setup 7-27
Setup considerations 7-12
System see System channel
channels 1-27
Close/open 7702 channels 1-27
System channel operation (7702 only) 1-27
CLOSE key 2-10, 2-15
CLOSE:MULTI 2-10
CLOSE:SINGLE 2-10
Command summary G-2
Commands
Address F-9
Addressed multiline F-8
Autozero and LSYNC 3-6
Basic measurement 3-32
Buffer 6-8
Bus F-6
Codes F-10
Common see Common commands
Condition register 11-18
dB 5-23
Digits 4-6
Display 1-16
Error queue 11-22
Event enable registers 11-20
Event register 11-19
Execution rules 10-16
Filter 4-18
General bus see General bus commands
Limits and digital output 9-13
Math 5-15
Multiple channel control 2-17
Range 4-4

Ratio and channel average 5-21
Rel 5-4
Scanning 7-29
SCPI see FORMat commands, SCPI
reference tables, and SYSTem
commands
Setups 1-23
Status byte and service request 11-9
System channel control 2-12
Triggering 8-17
Unaddress F-9
Uniline F-7
Universal multiline F-8
Common commands 12-1, F-9
*CLS 11-4
*ESE 11-20
*ESE? 11-20
*ESR? 11-19
*IDN? 12-3
*OPT? 12-5
*RCL 12-6
*RST 12-6
*SAV 12-6
*SRE 11-9
*SRE? 11-9
*STB? 11-9
*TRG 12-7
*TST? 12-7
Common errors 3-11
Connections
2-wire system channel 2-8
4-wire RTDs 3-24
4-wire system channel 2-9
AC volts calibration 17-12
Continuity testing 3-30
Current measurements 3-14
DC and AC amps calibration 17-11
DC volts and ohms calibration 17-8
Frequency and period measurements 3-28
GPIB 10-4
manufacturing calibration 17-22
Model 2790 AC current verification 16-13
Model 2790 AC volts verification 16-11
Model 2790 DC current verification 16-12
Model 2790 DC volts verification 16-8
Model 2790 frequency verification 16-17
Model 2790 resistance verification ( $100 \Omega$ to $10 \mathrm{M} \Omega$ ranges) $16-14$
Model 2790 resistance verification ( $100 \mathrm{M} \Omega$ range) $16-15$
Model 7702 AC current verification 16-23

Model 7702 AC volts verification 16-20
Model 7702 DC current verification 16-21
Model 7702 DC volts verification 16-18
Model 7702 frequency verification 16-27
Model 7702 ratio and average verification 16-28
Model 7702 resistance verification $(100 \Omega$ to $10 \mathrm{M} \Omega$ ranges) $16-24$
Model 7702 resistance verification ( $100 \mathrm{M} \Omega$ range) $16-25$
Model 7751 current measure input verification 16-32
Model 7751 source-voltage resistance verification 16-35
Model 7751 voltage source verification 16-31
Model 7751/7752 current source verification 16-30
Model 7751/7752 source-current resistance verification 16-33
Resistance measurements 3-17
RS-232 10-20
Temperature measurements 3-23
Thermistor 3-23
Trigger link 8-11
Voltage measurements 3-8
connections
low-thermal short 17-7
Connectors
DIGITAL I/O 1-12
IEEE-488 1-12, 10-4
RS-232 interface 1-12, 10-20
TRIG LINK 1-12
Contact information 1-2
Continuity connections 3-31
Continuity testing 3-30
Connections 3-30
Front panel input 3-30
Model 7702 switching module 3-30
Procedure 3-31
Control sources 7-7
External trigger 7-8
Immediate 7-8
Timer 7-8
Crest factor 3-12
Current measurements (DCI and ACI) 3-13
AMPS fuse replacement (front panel
AMPS input) 3-16
Amps measurement procedure 3-15
Connections 3-14
Front panel inputs 3-14
Model 7702 switching module 3-15

D
Data flow C-7
dB 5-22
Commands 5-23
Configuration 5-22
Programming examples 5-24
Remote programming 5-23
Scanning 5-23
DC calibration commands G-8
DC current
verifying, Model 2790 16-12
verifying, Model 7702 16-21
DC voltage
Verifying, Model 2790 16-8
verifying, Model 7702 16-18
DCI and ACI connections
Using front panel inputs 3-14
Using Model 7702 switching module 3-15
DCV and ACV connections
Using front panel inputs 3-9
Using Model 7702 switching module 3-10
DCV input divider 10-3
Default settings 1-18, 1-20
Delay 7-8, 8-3
Auto 7-8
Auto delay settings 8-4
Manual 7-8
Ratio and channel average 5-21
Ratio/Chan Average 7-9
Setting 7-18
Timer Delay for STEP and SCAN 7-21
Device action 7-9, 8-5
Digital I/O 1-12, 8-8, 9-5
Digital input 9-5
Digital outputs 9-6
Commands 9-13
Logic sense 9-7
Master limit latch 9-7
Programming example 9-15
Pulse option 9-7
Remote programming 9-13
Scanning 9-12
Setting 9-11
Sink mode, controlling external devices 9-7
Digits 4-1, 4-6
Commands 4-6
Programming examples 4-7
Remote programming 4-6
Scanning 4-6
Setting 4-7

DISP test 18-12
Display 1-16
Annunciators 1-10
Commands 1-16
DISPlay:ENABle 1-17
DISPlay:TEXT:DATA 1-17
DISPlay:TEXT:STATe 1-17
Programming example 1-17
Remote programming 1-16
DMM measurements 1-25
Exercise 1 - Basic DMM
measurements 1-26
Exercise 2 - Closing and opening 7702
channels (system channel operation) 1-29
Exercise 3 - Closing and opening
7751/7752 channels (multiple
channel operation) 1-31
front panel inputs 1-25
Multiple channel operation 1-30
Dual independent multiplexers 2-21
Dual multiplexer application 2-22
DUT test system 8-10

## E

Environmental conditions 16-2, 17-2
Error messages B-1
Error queue G-24
Error summary G-22
Examples
Basic measurement programming examples 3-38
Buffer programming example 6-14
dB programming examples 5-24
Default and user setups programming example 1-23
Digits programming examples 4-7
Display programming example 1-17
External triggering 8-10
Filter 4-15
Filter programming examples 4-20
Hold 8-6
Limits and digital outputs programming example 9-15
Math programming examples 5-17
Multiple channel remote programming example 2-18
Program and read register set programming example 11-20
Range programming examples 4-5

Rate and bandwidth programming examples 4-12
Ratio and channel average programming examples 5-22
Read error queue 11-22
Rel programming examples 5-6
Scanning 7-33
Scanning programming example 7-33
Serial poll programming example 11-10
Set MSS (B6) when error occurs 11-9
Sytem channel remote programming example 2-13
Triggering programming example 8-18
Extender board connections 17-27
External triggering 8-7
Example 8-10
With BNC connections 8-13

## F

factory defaults
restoring 16-5
Features
Model 2790 1-4
Filter 4-1, 4-13
*RST disables filter 4-16
*RST disables filter state to off 4-19
Characteristics 4-13
Commands 4-18
Control and configuration 4-16
Count 4-13
Example 4-15
Filter/channel 4-17
Moving and repeating 4-15
Programming examples 4-20
Remote programming 4-18
Scanning 4-17
Type 4-14
Window 4-14
FILTER key 4-16
Firmware 17-20
FORMat commands 14-2
FORMat:BORDer <name> 14-7
FORMat:ELEMents <item list> 14-6
FORMat[:DATA] <type>[,<length>] 14-2
Summary 15-6
FREQ and PERIOD connections for front panel inputs 3-28
frequency
Verifying, Model 2790 16-17
verifying, Model 7702 16-27

Frequency and period measurements 3-27
Connections 3-28
Front panel input 3-28
Model 7702 switching module 3-29
Gate time 3-27
Procedure 3-29
Trigger level 3-27
Front panel
Buffer 6-2
Inputs 1-11, 1-25
Summary 1-8
Trigger model 8-2
Front terminal AMPS fuse 18-4
Fuse
front terminal, replacing 18-4
plug-in module, replacing 18-5, 18-6
Power line 18-3
Ratings 1-15
Replacing 1-14
G
Gate time 3-27
General bus commands 10-7
DCL (device clear) 10-8
GET (group execute trigger) 10-9
GTL (go to local) 10-8
IFC (interface clear) 10-8
LLO (local lockout) 10-8
REN (remote enable) 10-7
SDC (selective device clear) 10-8
SPE, SPD (serial polling) 10-9
General information 1-2
Generating an SRQ on calibration complete G-25
Generating an SRQ on error G-24
Getting started 1-1
GPIB
Configuration F-3
Connections 10-4
Description F-2
Front panel 10-9
Overview F-1
Selecting 10-4
Setup 10-3
Standards 10-3
Status indicators 10-9
Ground loops D-7

H
High energy circuit safety precautions 3-3
Hold
Example 8-6
Reading 8-6
I
Idle 7-7, 8-2, 8-14
IEEE F-3
IEEE command groups F-13
IEEE-488
Bus configuration F-3
Bus overview F-1
Connector 1-12, 10-4
IEEE-488.2 common commands see Common commands
IEEE-754 single precision format 14-4
Inputs
Front panel 1-11, 1-25
INPUTs switch 1-11
Inspection 1-3
Interface function codes F-14
AH (Acceptor Handshake Function) F-14
C (Controller Function) F-15
DC (Device Clear Function) F-15
DT (Device Trigger Function) F-15
E (Bus Driver Type) F-15
L (Listener Function) F-14
LE (Extended Listener Function) F-15
PP (Parallel Poll Function) F-15
RL (Remote-Local Function) F-14
SH (Source Handshake Function) F-14
SR (Service Request Function) F-14
T (Talker Function) F-14
TE (Extended Talker Function) F-15
interlock 8-8
Introduction
Calibration 17-2
Calibration Program G-26
Calibration Reference G-2
Performance Verification 16-2
Routine Maintenance 18-2
J
Johnson noise equation D-5
K
KEY test 18-11
Keyclick 1-16
Remote programming 1-16

Key-press codes 14-9
Keys
CLOSE 2-10, 2-15
FILTER 4-16
Function 1-9
LOCAL 10-10
OPEN 2-11, 2-16
Operation 1-9
Range 1-10
RATE 4-8
Special 1-8
L
Limits 9-2
Basic operation 9-4
Beeper settings 9-4
Commands 9-13
Default 9-2
Enabling/disabling 9-5
Programming example 9-15
Remote programming 9-13
Scanning 9-4
Setting 9-4
limits
DCI, Model 2790 16-12
Plug-in module ACI, Model 7702 16-23
Plug-in module DCI, Model 7702 16-22
plug-in module resistance verification, Model 7702 16-25
resistance verification, Model 2790 16-15
source-current resistance verification, Model 7751/7752 16-34
source-voltage resistance verification, Model 7751 16-36, 16-37
Line cycle synchronization see LSYNC
Line frequency 1-14
line fuse
replacing 18-2
Line power 16-3, 17-2
Line power connection 1-13
Line voltage
Setting 1-14
line voltage
setting 18-2
LOCAL key 10-10
Low level considerations 3-12
AC voltage offset 3-13
Shielding 3-12
Thermal EMFs 3-12
LSYNC 3-5

Magnetic fields D-6
Maintenance,Routine 18-1
Manual ranging 4-3, 4-5
Manufacturing calibration 17-20
Extender board preparation 17-21
front panel 17-22, 17-24
Recommended test equipment 17-21
remote 17-23, 17-25
Unlocking manufacturing calibration 17-21
Math 5-7
Basic operation 5-14
Commands 5-15
mX+b 5-8, 5-9
Percent 5-11
Percent reference 5-16
Programming examples 5-17
Remote programming 5-15
Scanning 5-14
Setting mX+b units 5-16
Math commands
Reading math result 5-16
Measurement considerations D-2
Measurement event status 11-16
Measurements
Basic 3-32
Capabilities 3-2
Current see Current measurements (DCI and ACI)
Frequency and period see Frequency and period measurements
One-shot mode 13-7
Ranges 4-2
Resistance see Resistance measurements ( $\Omega 2$ and $\Omega 4$ ) 3-16
Setting speed 4-9
Temperature see Temperature measurements
Voltage see Voltage measurements (DCV and $A C V$ ) 3-8
Measuring function generator signal amplitude 17-24
Memory 2-36, 2-37, 2-39
Menus
CARD 2-26
Message exchange protocol 10-17
Messages
Program 10-14
Response 10-16
Status and error B-1

Meter loading D-10
Minimizing source resistance noise D-5
Model 2790
Module installation 2-4
Switching module 3-7
Model 7702
simplified schematic 2-35
Switching module
Ratio and channel average calculations 3-10
Model 7702 amps fuse $18-5$
Model 7702 switching module 2-33
Schematic diagram 2-34
Switching module capabilities 2-33
Model 7751 and 7752 calibration commands G-16
Model 7751/7752
simplified schematic 2-32
Model 7751/7752 amps fuse 18-7
Models 7751 and 7752
Switching modules 2-31
modules
identifying installed modules 2-26
Switching module queries (remote operation) 2-28
Monitor channel 7-18
Monitor scan example 7-38
Multiple channel operation 2-13
Multiple channels
Control commands 2-17
Controlling 2-14
Operation 2-13
Anomalies 2-19
$\mathrm{mX}+\mathrm{b}$ (math function) 5-8, 5-9
Configuration 5-8, 5-10
Rel 5-9
Setting units 5-16
$\mathbf{N}$
Noise
Johnson noise equation D-5
Lowest settings 4-8
Source resistance D-5
vs. speed characteristics 4-8
NPLC setting 4-9

## O

Offset-compensated ohms 3-20
Enabling/disabling 3-20
Performing measurements 3-21
OPEN key 2-11, 2-16
OPEN/
ALL 2-11
OPEN: ALL 2-16
OPEN: MULTI 2-16
Operation event status 11-14
Options 1-3
Output trigger 7-10, 8-5

## P

Paired channels
see 4-wire functions
Percent (math function) 5-11
Configuration 5-11
Reference 5-16
Performance considerations 3-4
Plug-in switching modules 1-3, 1-6
Power 1-7
Power module 1-12, 1-13
Power switch 1-8
Power-up 1-13
Sequence 1-15
Primary address
Setting 10-4
Program message terminator (PMT) 10-15
Program messages 10-14
Programming syntax $10-10$
Pseudocards 1-7, 2-6, 10-2

## Q

Questionable event status 11-18
Queues 11-2, 11-21
Clearing 11-4
Error queue 11-21
Output queue 11-21
Quick start 1-1
Exercises 1-24
Quick start exercises 1-24

R
Rack mount kits 1-4
Radio frequency interference D-6
Range 4-1, 4-2
Auto ranging 4-3, 4-5
Commands 4-4
Keys 1-10
Manual ranging 4-3, 4-5
Measurement 4-2
Programming examples 4-5
Remote programming 4-4
Scanning 4-3
Range, Digits, Rate, Bandwidth, and Filter 4-1
Rate 4-1, 4-8
Aperture 4-12
Bandwidth 4-12
Bandwidth conflict error 4-12
Commands 4-10
Programming examples 4-12
Remote programming 4-10
Scanning 4-10
Settings 4-9
RATE key 4-8
Ratio 5-18
Basic operation 5-19
Channel pairing 5-18
Commands 5-21
DCV 5-19
Delay 5-21
Enabling/disabling 5-21
Programming examples 5-22
Remote programming 5-21
Scanning 5-20
Ratio (7702 only) 5-18
ratio and average
verifying, Model 7702 16-28
Ratio and channel average
delay 5-21
Reading count 7-9
reading limit
ACV, Model 2790 16-11
calculating resistance 16-5
calculation, example 16-5
DCV, Model 2790 16-9
four-wire RTD temperature verification, Model 2790 16-16
Plug-in module ACV, Model 7702 16-21
Plug-in module DCV, Model 7702 16-19
Plug-in module four-wire RTD
temperature verification, Model
7702 16-26

Readings
Maximum 4-2
Recall while storing 6-11
Recalling 6-6
Storing 6-5
Rear panel
Summary 1-12
Recommended test equipment 16-4, 17-26
Registers
Bit descriptions 11-12
Clearing 11-4
Condition 11-18
Event 11-19
Event enable 11-20
Measurement event 11-15
Operation event 11-14
Programming enable registers 11-5
Questionable event 11-17
Reading 11-6
Service request enable 11-8
Standard event 11-12
Status byte and SRQ see Status byte and service request (SRQ)
Status byte register 11-7
Status register sets 11-2, 11-12
Relative 5-2
Basic operation 5-2
commands 5-4
Pressing REL using rel commands 5-6
Programming examples 5-6
Remote programming 5-4
Scanning 5-3
Setting rel values 5-6
Relative, Math, Ratio, Channel Average, and dB 5-1
Relay closure count 2-29
Reading relay closure count 2-30
Setting count update interval 2-30
Remote calibration 17-14
AC current 17-19
AC voltage 17-18
command summary G-2
DC current 17-18
DC volts 17-16
Locking out calibration 17-20
preparing the Model 2790 17-14
Programming calibration dates 17-20
resistance 17-17
Saving calibration constants 17-20
short and open 17-15

Remote error reporting G-22
Remote operations 10-1

> Enhancements 10-2

Remote programing
Limits and digital output 9-13
Remote programming
Autozero and LSYNC 3-6
Basic measurements 3-32
Buffer 6-8
dB 5-23
Default and user setups 1-23
Digits 4-6
Display 1-16
Filter 4-18
Information 1-24
Math 5-15
Multiple channel control commands 2-17
Range 4-4
Rate and bandwidth 4-10
Ratio and channel average 5-21
Rel 5-4
Scanning 7-26
System channel control commands 2-12
Trigger and return readings 1-35
Triggering 8-14
resistance
verifying, Model 2790 16-14
verifying, Model 7702 16-24
Resistance measurements ( $\Omega 2$ and $\Omega 4$ ) 3-16
Connections 3-17
Cable leakage 3-19
Front panel inputs 3-17
Model 7702 switching module 3-18
Shielding 3-18
Offset-compensated ohms 3-20
Resistors
Sorting 9-16
Response messages 10-16
Multiple 10-16
Sending 10-16
Terminator (RMT) 10-16
Routine Maintenance
Replacing Model 7702 plug-in module amps fuses 18-5
Replacing Model 7751/7752 plug-in module fuses 18-6
RS-232
Connections 10-20
Connector 1-12

RS-232 interface
Baud rate 10-17
Connector 10-20
Operation 10-17
Selecting and configuring 10-19
Sending and receiving data 10-17
Signal handshaking (flow control) 10-18
Terminator 10-19
RTD equation E-4

## S

Safety precautions
High energy circuits 3-3
Safety symbols and terms 1-2
SCAN 7-17
Operation overview 7-7
Scan
Advanced 7-15
Commands 7-29
Scanning 5-20, 7-1
Advanced 7-15
Advanced scan setup procedure 7-16
Allowed settings per channel 7-2, 7-10
Auto scan 7-21
Automatic scan list configuration 7-20
Basic scan 7-21
Buffer 7-22
Configuration 7-10
dB 5-23
Digital outputs 9-12
Digits 4-6
Examples 7-33
External trigger scan example 7-34
Filter 4-17
Fundamentals 7-2
Limits 9-4
Manual/external trigger scan 7-22
Math 5-14
Monitor scan 7-37
Monitor scan (analog trigger) 7-24
Operation 7-21
Process 7-4
Range 4-3
Rate and bandwidth 4-10
Ratio and channel average 5-20
Relative 5-3
Remote programming 7-26
Remote programming example 7-33
Reset 7-13
Resume scan after power-up 7-21

Sequential and non-sequential 7-3, 7-4, 7-11
Simple 1-32, 7-14
scanning 1-32
Scanning (7702 only) 7-1
Remote programming 7-1, 7-26
Scan configuration 7-1, 7-11
Scan operation 7-1, 7-21
Scanning examples 7-1, 7-33
Scanning fundamentals 7-1, 7-2
SCPI commands F-9
SCPI commands see FORMat commands, SCPI reference tables, SCPI signal oriented measurement commands, and SYSTem commands
SCPI reference tables 15-1
CALCulate commmand summary 15-3
DISPlay command summary 15-6
FORMat command summary 15-6
ROUTe command summary 15-7
SENSe command summary 15-9
SCPI signal oriented measurement commands
13-1, 16-1
CONFigure: $<$ function $>$ [<rang $>$ ], $[<$ res $>$ ],
[<clist>] 13-4

FETCh? 13-6
READ? 13-7
Serial polling and SRQ 11-8
Settings
Default 1-18, 1-20
Setups 1-18
Commands 1-23
Remote programming 1-23
Restoring 1-19
Saving 1-19, 7-20
Shielding 3-12, 3-18, D-9
Signal handshaking 10-18
Signal processing sequence C-2
Slot numbering 2-6
Source mode
Logic control 9-9
SPE, SPD (serial polling) 11-8
Specifications A-1
Speed
Setting measurement speed 4-9
vs. noise characteristics 4-8
Standard event status 11-12
Status and error messages B-1
Status byte and service request (SRQ) 11-6
Commands 11-9
Status byte EAV (Error Available) bit G-24

Status indicators
GPIB 10-9
Status structure 11-1
Overview 11-2
STEP 7-17
Operation overview 7-7
Switching modules 1-3, 1-6
Closing and opening channels 1-27, 2-1
Connections 2-4
Identifying installed 1-7, 2-26
Installation 2-4
Model 7702 2-33
Models 7751 and 7752 2-31
Queries 2-28
Viewing closed channels 2-26
SxIohms 5-12
SxVohms 5-13
System channel
Control commands 2-12
Controlling 2-9
Operation 2-6
System channel operation (7702 only) 2-7
2-wire functions 2-7
4 -wire functions (paired channels) 2-8
SYSTem commands 14-8
SYSTem:BEEPer[:STATe] <b> 14-9
SYSTem:KEY <NRf> 14-8
SYSTem:PRESet 14-8
SYSTem:VERSion 14-8

T
Temperature
Best temperature sensor 3-22
Equations E-1
Measurements see Temperature measurements
temperature
RTD, Model 2790 16-16
RTD, Model 7702 16-26
verifying, Model 2790 16-16
verifying, Model 7702 16-26
Temperature measurements 3-22
4-wire RTDs 3-22
Configuration 3-24
Connections 3-23
Procedure 3-26
Thermistors 3-22
Terminator 10-19
Test 17-21
Test System Safety Precautions 2-2

Tests
Continuity see Continuity testing
Thermal EMFs 3-12
Minimizing D-4
Thermistors 3-22
Connections 3-23
Equation E-2
Thermoelectric
Coefficients D-2
Generation D-3
Potentials D-2
Timestamps 6-4
Configuring 6-4
Real-time clock timestamp 6-4
Relative 6-4
Selecting 6-5
Setting time and date 6-4
TRIG LINK 1-12
TRIG LINK pinout 8-7
Trigger and return readings
remote programming 1-35
Trigger link
Connections 8-11
Input 9-5
Input pulse specifications (EXT TRIG) 8-8
Output pulse specifications (VMC) 8-9
Trigger model 8-2
Control source and event detection 8-3
Idle 8-2
Idle and initiate 8-14
Operation 8-16
Remote operation 8-14
With SCAN function 7-6
Trigger models 7-4
With STEP function 7-5
Triggering 8-1
Commands 8-17
External see External triggering
Programming example 8-18
Remote programming 8-14

## U

User setups see Setups

## V

verification
Model 2790 16-8
Model 7702 16-18
Model 7751 and 7752 16-28
Verification limits 16-5
Verification test
considerations 16-7
Model 2790 16-6
Model 7702 16-6
summary 16-6
verification test
procedures 16-6
Verification test requirements 16-2
verifying
AC current, Model 7702 16-23
Voltage measurements (DCV and ACV) 3-7, 3-8

Connections 3-8
Front panel input 3-8
Model 7702 switching module 3-10
DCV input divider 3-8
Model 7702 switching module $3-10$
Procedure 3-11
Voltmeter complete 8-9

## W

Warm-up 3-4
Warm-up period
calibration 17-2
Verification Procedures 16-3
Warranty information 1-2

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies.

## KEITHLEY

## A GREATER MEASURE OF CONFIDENCE

## Keithley Instruments, Inc.

Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) • www.keithley.com

Belgium: Sint-Pieters-Leeuw •02-363 0040 • Fax: 02-363 0064 • www.keithley.nl
China: Beijing • 8610-82251886 • Fax: 8610-82251892 • www.keithley.com.cn Finland: Helsinki • 09-5306-6560 • Fax: 09-5306-6565 • www.keithley.com France: Palaiseau C dex •01-64 532020 • Fax: 01-60 117726 • www.keithley.fr Germany: Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34 • www.keithley.de Great Britain: Theale • 01189297500 • Fax: 01189297519 • www.keithley.co.uk India: Bangalore • 0802128027 • Fax : 0802128005 • www.keithley.com

Italy: Milano • 02-48 391601 • Fax: 02-48 302274 • www.keithley.it Japan: Tokyo • 81-3-5733-7555 • Fax: 81-3-5733-7556 • www.keithley.jp Korea: Seoul • 82-2-574-7778 • Fax: 82-2-574-7838 • www.keithley.com Netherlands: Gorinchem • 0183-635333 • Fax: 0183-630821 • www.keithley.nl Singapore: Singapore • 65-6747-9077 • Fax: 65-6747-2991 • www.keithley.com Sweden: Solna • 08-509 04600 • Fax: 08-655 2610 • www.keithley.com Taiwan: Hsinchu • 886-3-572-9077 • Fax: 886-3-572-9031 • www.keithley.com.tw


[^0]:    Corporate Headquarters $¥ 28775$ Aurora Road $¥$ Cleveland, Ohio $44139 ¥ 440-248-0400 ¥$ Fax: 440-248-6168 $¥ 1-888$-KEITHLEY (534-8453) $¥$ www.keithley.com

[^1]:    Italy: Milano $¥ 02-48391601 ¥$ Fax: 02-48 $302274 ¥$ wndeeithley.it Japan: Tokyo $¥ 81-3-5733-7555 ¥$ Fax: 81-3-5733-7556 $¥$ wulkeithley.jp Korea: Seoul $¥ 82-2-574-7778 ¥$ Fax: 82-2-574-7838 $¥$ wunkeithley.com Netherlands: Gorinchem $¥ 0183-635333 ¥$ Fax: 0183-630821 $¥$ wnkeithley.nl Singapore: Singapore $¥ 65-6747-9077 ¥$ Fax: 65-6747-2991 $¥$ wwheithley.com Sweden: Solna $¥ 08-50904600 ¥$ Fax: 08-655 $2610 ¥$ wnkeithley.com Taiwan: Hsinchu $¥ 886-3-572-9077 ¥$ Fax: 886-3-572-9031 $¥$ wnskeithley.com.tw

[^2]:    *It is a good, safe practice to start and end a switching sequence by opening all channels.

[^3]:    1. Factory and *RST defaults opens all channels, selects the DCV function, and sets TRIG: COUN to 1. The trigger count specifies the number of scans to be performed.
    2. ROUT: SCAN:LSEL INT enables the scan and INIT triggers the start of the scan.
[^4]:    *Refer to the paragraphs following this table for more information.

[^5]:    *Refer to the paragraphs following this table for more information.

[^6]:    *Refer to the paragraphs following this table for more information.
    ${ }^{1}$ The <clist> parameter is used for the module to configure one or more channels for a scan.

[^7]:    *The <clist> parameter is used to configure one or more 7702 channels for a scan.

[^8]:    *The <clist> parameter is used to configure one or more channels for a scan. Each channel in the <clist> must be set to the function specified by the rel (reference) command. If not, a conflict error (-221) will occur. For example, UNITs:VOLTage:AC dB, (@101) is only valid if scan channel 101 is set for the ACV function.

[^9]:    NOTE While in remote, pressing the LOCAL key restores continuous front panel operation.

[^10]:    NOTE Remote programming cannot be used to set the beeper. It can only be set from the front panel.

[^11]:    *Affected outputs are pulled (or pulsed) high or low when a limit test fails.

[^12]:    Note: Only one channel can be specified in the 7702 <clist> for the MEASure? command.

[^13]:    Note: The SYSTem:PRESet and *RST default is READ, UNIT, RNUM, and TST.

[^14]:    7702 <clist> = (@SCH), where: S = Mainframe slot number (1 or 2 ) and CH = Switching module channel number.
    $7751 / 7752 / 7753$ <clist> $(\mathrm{DCV}, \Omega 2, \Omega 4)=(@ M n)$ (see "Memory patterns," page 2-36).

[^15]:    *Source positive and negative values for each range.

[^16]:    * If the 5725 A amplifier is not available, change the $700 \mathrm{~V} @ 50 \mathrm{kHz}$ step to $220 \mathrm{~V} @ 50 \mathrm{kHz}$. Reading limits for $220 \mathrm{~V} @ 50 \mathrm{kHz}=219.36$ to 220.64 V .

[^17]:    * Source positive and negative currents with values shown.
    ** If the Fluke 5725 amplifier is not available, apply 2.2A from calibrator. Reading limits for 2.2 A input are: 2.197240 to 2.202760 A .

[^18]:    *If the Fluke 5725A amplifier is not available, apply 2.2A from the calibrator. Reading limits for 2.2A are 2.1949 to 2.2051 A .

[^19]:    *Enable O COMP (offset-compensated ohms) when testing $100 \Omega$ range.
    **Calculate limits based on actual calibration resistance values and Model 2790 one-year resistance accuracy specifications. See Verification limits.

[^20]:    *Based on $\alpha=0.00385$. See text.

[^21]:    *Source positive and negative values for each range.

[^22]:    * Source positive and negative currents with values shown.
    ** If the Fluke 5725 amplifier is not available, apply 2.2A from calibrator. Reading limits for 2.2 A input are: 2.197240 to 2.202760 A .

[^23]:    * If the Fluke 5725A amplifier is not available, apply 2.2A from the calibrator. Reading limits for 2.2 A are 2.1949 to 2.2051 A .

[^24]:    *Based on $\alpha=0.00385$. See text.

[^25]:    * Calculate limits based on actual characterized resistance values and Model 7751/7752/7753 resistance accuracy specifications. See Verification limits.

[^26]:    * Calculate limits based on actual characterized resistance values and Model 7751 resistance accuracy specifications. See Verification limits.

[^27]:    $* 1 \mathrm{kHz}$ specifications. 10 mV and 700 V points require 1 kHz only. All calibrator specifications are 90 -day, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ specifications and indicate total absolute uncertainty at specified output.

[^28]:    * Nominal resistance. Adjust Model 2790 calibration parameter to agree with actual value.

[^29]:    NOTE Calibration constants calculated during the present calibration procedure will not be saved unless you choose the YES option. Previous calibration constants will be retained if you select $N O$.

[^30]:    *Use exact calibrator resistance value for parameter.

[^31]:    * Unit must be in manufacturing calibration mode. See Note on page 18-10.

[^32]:    EE = error event
    SE = status event
    SYS = system error event

[^33]:    *Assumes primary address $=16$.

